117 research outputs found

    Rethinking the neonatal transport ground ambulance

    Get PDF
    Objectives: This article describes the detailed project aimed to realize a dedicated ground ambulance for neonatal emergency transport service (NETS). To date, the European Community rules specify requirements for the design, testing, performance, and equipping of road ambulance used for transport and care of adult injured or ill patients, completely ignoring neonatal transport. Methods: The project consisted of electric and gas supply planning, interior design taking into account ergonomic and occupant protection principles, both during travel and during medical care performances. Results: A detailed project is presented. Main differences between European Type C ambulance and the new proposed Type D neonatal ground ambulance are the presence on board of air compressed cylinder, iNO cylinders and delivery system, phototheraphy, shock adsorbing stretcher support, cooling device, patient's placenta (refrigeration box), and transcutaneous gas analyzer. Conclusion: The European Community rules specify requirements for road ambulance used for transport and care of adult injured or ill patients, completely ignoring neonatal transport. This study describes the detailed project aimed to realize a dedicated ground ambulance for neonatal emergency transport service. This study demonstrated that it is not possible simply to adapt the currently dedicated ambulance for mobile intensive care and resuscitation services (actual type C European Community) in a modern dedicated NETS ambulance; it is of paramount importance suggesting to European Community to introduce a further ambulance type, to be identified type D, strictly reserved to neonatal transport activities

    Crustal structure of the propagating TAMMAR ridge segment on the Mid-Atlantic Ridge, 21.5°N

    Get PDF
    Active ridge propagation frequently occurs along spreading ridges and profoundly affects ridge crest segmentation over time. The mechanisms controlling ridge propagation, however, are poorly understood. At the slow spreading Mid-Atlantic Ridge at 21.5°N a seismic refraction and wide-angle reflection profile surveyed the crustal structure along a segment controlled by rapid ridge propagation. Tomographic traveltime inversion of seismic data suggests that the crustal structure along the ridge axis is controlled by melt supply; thus, crust is thickest, 8 km, at the domed segment center and decreases in thickness toward both segment ends. However, thicker crust is formed in the direction of ridge propagation, suggesting that melt is preferentially transferred toward the propagating ridge tip. Further, while seismic layer 2 remains constant along axis, seismic layer 3 shows profound changes in thickness, governing variations in total crustal thickness. This feature supports mantle upwelling at the segment center. Thus, fluid basaltic melt is redistributed easily laterally, while more viscose gabbroic melt tends to crystallize and accrete nearer to the locus of melt supply. The onset of propagation seems to have coincided with the formation of thicker crust, suggesting that propagation initiation might be due to changes in the melt supply. After a rapid initiation a continuous process of propagation was established. The propagation rate seems to be controlled by the amount of magma that reaches the segment ends. The strength of upwelling may govern the evolution of ridge segments and hence ultimately controls the propagation length

    Accretion, structure and hydrology of intermediate spreading-rate oceanic crust from drillhole experiments and seafloor observations

    Full text link
    Downhole measurements recorded in the context of the Ocean Drilling Program in Hole 504B, the deepest hole drilled yet into the oceanic crust, are analyzed in terms of accretion processes of the upper oceanic crust at intermediate spreading-rate. The upper part of the crust is found to support the non steady-state models of crustal accretion developed from seafloor observations (Kappel and Ryan, 1986; Gente, 1987). The continuous and vertical nature of borehole measurements provides stratigraphic and structural data that cannot be obtained solely from seafloor studies and, in turn, these models define a framework to analyze the structural, hydrological, and mineralogical observations made in the hole over the past decade.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43190/1/11001_2005_Article_BF01204282.pd

    International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database - the quality controlled standard tool for routine identification of human and animal pathogenic fungi

    Get PDF
    Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.This study was supported by an National Health and Medical Research Council of Australia (NH&MRC) grant [#APP1031952] to W Meyer, S Chen, V Robert, and D Ellis; CNPq [350338/2000-0] and FAPERJ [E-26/103.157/2011] grants to RM Zancope-Oliveira; CNPq [308011/2010-4] and FAPESP [2007/08575-1] Fundacao de Amparo Pesquisa do Estado de So Paulo (FAPESP) grants to AL Colombo; PEst-OE/BIA/UI4050/2014 from Fundacao para a Ciencia e Tecnologia (FCT) to C Pais; the Belgian Science Policy Office (Belspo) to BCCM/IHEM; the MEXBOL program of CONACyT-Mexico, [ref. number: 1228961 to ML Taylor and [122481] to C Toriello; the Institut Pasteur and Institut de Veil le Sanitaire to F Dromer and D Garcia-Hermoso; and the grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and the Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG) to CM de Almeida Soares and JA Parente Rocha. I Arthur would like to thank G Cherian, A Higgins and the staff of the Molecular Diagnostics Laboratory, Division of Microbiology and Infectious Diseases, Path West, QEII Medial Centre. Dromer would like to thank for the technical help of the sequencing facility and specifically that of I, Diancourt, A-S Delannoy-Vieillard, J-M Thiberge (Genotyping of Pathogens and Public Health, Institut Pasteur). RM Zancope-Oliveira would like to thank the Genomic/DNA Sequencing Platform at Fundacao Oswaldo Cruz-PDTIS/FIOCRUZ [RPT01A], Brazil for the sequencing. B Robbertse and CL Schoch acknowledge support from the Intramural Research Program of the NIH, National Library of Medicine. T Sorrell's work is funded by the NH&MRC of Australia; she is a Sydney Medical School Foundation Fellow.info:eu-repo/semantics/publishedVersio

    Geometry of extensional faults developed at slow-spreading centres from seismic reflection data in the Central Atlantic (Canary Basin)

    Get PDF
    We present depth images, from portions of profiles that are close to flow-lines, of Cretaceous oceanic crust in the eastern Central Atlantic. Compared with post-stack time migrations, the images illustrate the improvement resulting from the application of pre-stack depth migration. The images document the scale and geometry of normal faulting in oceanic crust formed over 25 Myr at a half-spreading rate of less than 10 mm yr−1, and the variation in extensional style with position within the spreading segment. Away from major fault zones (FZs), most faults are subplanar, dip more than 35°, are associated with moderate basement relief (0.2–1 km relief) and may penetrate to deep crustal levels. These faults could be related to the lifting of the lithosphere out of the median valley to the flanking mountains. Also observed away from FZs are gently dipping to subhorizontal reflections in the upper crust, which resemble detachment faults. In contrast, the inside corner crust is more rugged, with basement highs rising up to 2 km above the intervening basins. This larger-scale topography is associated with a different style of faulting: the depth images reveal gently dipping (<35°) faults that are rooted in the deep crust and that project to the ridgeward flank of the dome-shaped large basement highs (1–2 km vertical relief). The faults seem to continue as the ridge-facing flank of these highs and some may extend over the crest of the high to breakaways beyond. In this case, the domal highs that form the exhumed footwall to the faults can be described as oceanic core complexes. These controlling faults are up to 20 km long and have a heave of ∼10 km, sufficient to have accommodated up to 50 per cent extension and to have exhumed deep crustal and perhaps even mantle rocks. We suggest that similar faults can explain the structure and lithologies found at megamullion structures (oceanic core complexes) at inside corners near the present-day spreading ridge
    • …
    corecore