4,557 research outputs found

    Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial.

    Get PDF
    BACKGROUND & AIMS: Eating habits may influence the life span and the quality of ageing process by modulating inflammation. The RISTOMED project was developed to provide a personalized and balanced diet, enriched with or without nutraceutical compounds, to decrease and prevent inflammageing, oxidative stress and gut microbiota alteration in healthy elderly people. This paper focused on the effect on inflammation and metabolism markers after 56 days of RISTOMED diet alone or supplementation with three nutraceutical compounds. METHODS:A cohort of 125 healthy elderly subjects was recruited and randomized into 4 arms (Arm A, RISTOMED diet; Arm B, RISTOMED diet plus VSL#3 probiotic blend; Arm C, RISTOMED diet plus AISA d-Limonene; Arm D, RISTOMED diet plus Argan oil). Inflammatory and metabolism parameters as well as the ratio between Clostridium cluster IV and Bifidobacteria (CL/B) were collected before and after 56 days of dietary intervention, and their evolution compared among the arms. Moreover, participants were subdivided according to their baseline inflammatory parameters (erythrocytes sedimentation rate (ESR), C-Reactive Protein, fibrinogen, Tumor Necrosis Factor-alfa (TNF-α), and Interleukin 6) in two clusters with low or medium-high level of inflammation. The evolution of the measured parameters was then examined separately in each cluster. RESULTS:Overall, RISTOMED diet alone or with each nutraceutical supplementation significantly decreased ESR. RISTOMED diet supplemented with d-Limonene resulted in a decrease in fibrinogen, glucose, insulin levels and HOMA-IR. The most beneficial effects were observed in subjects with a medium-high inflammatory status who received RISTOMED diet with AISA d-Limonene supplementation. Moreover, RISTOMED diet associated with VSL#3 probiotic blend induced a decrease in the CL/B ratio. CONCLUSIONS:Overall, this study emphasizes the beneficial anti-inflammageing effect of RISTOMED diet supplemented with nutraceuticals to control the inflammatory status of elderly individuals

    A minimal Beta Beam with high-Q ions to address CP violation in the leptonic sector

    Get PDF
    In this paper we consider a Beta Beam setup that tries to leverage at most existing European facilities: i.e. a setup that takes advantage of facilities at CERN to boost high-Q ions (8Li and 8B) aiming at a far detector located at L = 732 Km in the Gran Sasso Underground Laboratory. The average neutrino energy for 8Li and 8B ions boosted at \gamma ~ 100 is in the range E_\nu = [1,2] GeV, high enough to use a large iron detector of the MINOS type at the far site. We perform, then, a study of the neutrino and antineutrino fluxes needed to measure a CP-violating phase delta in a significant part of the parameter space. In particular, for theta_13 > 3 deg, if an antineutrino flux of 3 10^19 useful 8Li decays per year is achievable, we find that delta can be measured in 60% of the parameter space with 6 10^18 useful 8B decays per year.Comment: 19 pages, 10 figures, added references and corrected typo

    Preliminary results from a simulation of quenched QCD with overlap fermions on a large lattice

    Full text link
    We simulate quenched QCD with the overlap Dirac operator. We work with the Wilson gauge action at beta=6 on an 18^3x64 lattice. We calculate quark propagators for a single source point and quark mass ranging from am_q=0.03 to 0.75. We present here preliminary results based on the propagators for 60 gauge field configurations.Comment: Lattice2003(chiral); 9 latex pages (espcrc2.sty), 13 figures. Based on talks given by C.H., L.L. and C.R. at 21st International Symposium on Lattice Field Theory (Lattice 2003), Tsubuka, Japan, 15-19 July 2003. Repitition in references corrected and one reference adde

    Micro- and Nanopatterned Silk Substrates for Antifouling Applications

    Get PDF
    A major problem of current biomedical implants is the bacterial colonization and subsequent biofilm formation, which seriously affects their functioning and can lead to serious post-surgical complications. Intensive efforts have been directed toward the development of novel technologies that can prevent bacterial colonization while requiring minimal antibiotics doses. To this end, biocompatible materials with intrinsic antifouling capabilities are in high demand. Silk fibroin, widely employed in biotechnology, represents an interesting candidate. Here, we employ a soft-lithography approach to realize micro- and nanostructured silk fibroin substrates, with different geometries. We show that patterned silk film substrates support mammal cells (HEK-293) adhesion and proliferation, and at the same time, they intrinsically display remarkable antifouling properties. We employ Escherichia coli as representative Gram-negative bacteria, and we observe an up to 66% decrease in the number of bacteria that adhere to patterned silk surfaces as compared to control, flat silk samples. The mechanism leading to the inhibition of biofilm formation critically depends on the microstructure geometry, involving both a steric and a hydrophobic effect. We also couple silk fibroin patterned films to a biocompatible, optically responsive organic semiconductor, and we verify that the antifouling properties are very well preserved. The technology described here is of interest for the next generation of biomedical implants, involving the use of materials with enhanced antibacterial capability, easy processability, high biocompatibility, and prompt availability for coupling with photoimaging and photodetection techniques

    Quenched BKB_K-parameter with the Wilson and Clover actions at ÎČ=6.0\beta = 6.0

    Full text link
    We present results for the Kaon BB parameter from a sample of 200200 configurations using the Wilson action and 460460 configurations using the Clover action, on a 183×6418^3 \times 64 lattice at ÎČ=6.0\beta=6.0. A slight improvement of the chiral behaviour of BKB_K is observed due to the Clover action. We have also compared the results for BKB_K obtained from two different procedures for the boosting of the coupling constant gg. We observe a strong dependence of BKB_K on the prescription adopted for gg in the Wilson case, contrary to the results of the Clover case which are almost unaffected by the choice of gg. Combining some recently obtained non perturbative estimates for the renormalisation constants with our Clover matrix element, we observe a significant improvement in the chiral behaviour of BKB_K.Comment: 3 pages, Latex, Postscript file with figures available at ftp://hpteo.roma1.infn.it/pub/preprints/lat94/donini ; to appear in Lattice '94, Nucl. Phys. (Proc.Suppl.

    Adherence and Constancy in LIME-RS Explanations for Recommendation

    Full text link
    Explainable Recommendation has attracted a lot of attention due to a renewed interest in explainable artificial intelligence. In particular, post-hoc approaches have proved to be the most easily applicable ones to increasingly complex recommendation models, which are then treated as black boxes. The most recent literature has shown that for post-hoc explanations based on local surrogate models, there are problems related to the robustness of the approach itself. This consideration becomes even more relevant in human-related tasks like recommendation. The explanation also has the arduous task of enhancing increasingly relevant aspects of user experience such as transparency or trustworthiness. This paper aims to show how the characteristics of a classical post-hoc model based on surrogates is strongly model-dependent and does not prove to be accountable for the explanations generatedThe authors acknowledge partial support of PID2019-108965GB-I00, PONARS01_00876BIO-D,CasadelleTecnologie mergenti della CittĂ di Matera, PONARS01_00821FLET4.0, PIAServiziLocali2.0,H2020Passapartout-Grantn. 101016956, PIAERP4.0,andIPZS-PRJ4_IA_NORMATIV

    Precision on leptonic mixing parameters at future neutrino oscillation experiments

    Get PDF
    We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta_{13} and the CP phase, delta, assuming that theta_{13} is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta_{13} and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta_{13} below 3% and an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure

    Chiral behaviour of the lattice BKB_K-parameter with the Wilson and Clover Actions at ÎČ=6.0\beta = 6.0

    Get PDF
    We present results for the kaon BB-parameter BKB_K from a sample of 200200 configurations using the Wilson action and 460460 configurations using the SW-Clover action, on a 183×6418^3 \times 64 lattice at ÎČ=6.0\beta=6.0. We compare results obtained by renormalizing the relevant operator with different ``boosted" values of the strong coupling constant αs\alpha_s. In the case of the SW-Clover action, we also use the operator renormalized non-perturbatively. In the Wilson case, we observe a strong dependence of BKB_K on the prescription adopted for αs\alpha_s, contrary to the results of the Clover case which are almost unaffected by the choice of the coupling. We also find that the matrix element of the operator renormalized non-perturbatively has a better chiral behaviour. This gives us our best estimate of the renormalization group invariant BB-parameter, B^K=0.86±0.15\hat B_K=0.86 \pm 0.15.Comment: LaTeX, 17 pages, 3 postscript figures uuencode

    Hierarchical TiN-Supported TsFDH Nanobiocatalyst for CO2 Reduction to Formate

    Get PDF
    The electrochemical reduction of CO2 to value-added products like formate represents a promising technology for the valorization of carbon dioxide. We propose a proof-of-concept bioelectrochemical system (BES) for the reduction of CO2 to formate. For the first time, our device employs a nanostructured titanium nitride (TiN) support for the immobilization of a formate dehydrogenase (FDH) enzyme. The hierarchical TiN nanostructured support exhibits high surface area and wide pore size distribution, achieving high catalytic loading, and is characterized by higher conductivity than other oxide-based supports employed for FDHs immobilization. We select the oxygen-tolerant FDH from Thiobacillus sp. KNK65MA (TsFDH) as enzymatic catalyst, which selectively reduces CO2 to formate. We identify an optimal TiN morphology for the enzyme immobilisation through enzymatic assay, reaching a catalyst loading of 59 mu g cm(-2) of specifically-adsorbed TsFDH and achieving a complete saturation of the anchoring sites available on the surface. We evaluate the electrochemical CO2 reduction performance of the TiN/TsFDH system, achieving a remarkable HCOO- Faradaic efficiency up to 76 %, a maximum formate yield of 44.1 mu mol mg(FDH)(-1) h(-1) and high stability. Our results show the technological feasibility of BES devices employing novel, nanostructured TiN-based supports, representing an important step in the optimization of these devices

    Hierarchical TiN-Supported TsFDH Nanobiocatalyst for CO2 Reduction to Formate

    Get PDF
    The electrochemical reduction of CO2 to value-added products like formate represents a promising technology for the valorization of carbon dioxide. We propose a proof-of-concept bioelectrochemical system (BES) for the reduction of CO2 to formate. For the first time, our device employs a nanostructured titanium nitride (TiN) support for the immobilization of a formate dehydrogenase (FDH) enzyme. The hierarchical TiN nanostructured support exhibits high surface area and wide pore size distribution, achieving high catalytic loading, and is characterized by higher conductivity than other oxide-based supports employed for FDHs immobilization. We select the oxygen-tolerant FDH from Thiobacillus sp. KNK65MA (TsFDH) as enzymatic catalyst, which selectively reduces CO2 to formate. We identify an optimal TiN morphology for the enzyme immobilisation through enzymatic assay, reaching a catalyst loading of 59 ÎŒg cm−2 of specifically-adsorbed TsFDH and achieving a complete saturation of the anchoring sites available on the surface. We evaluate the electrochemical CO2 reduction performance of the TiN/TsFDH system, achieving a remarkable HCOO− Faradaic efficiency up to 76 %, a maximum formate yield of 44.1 ÎŒmol mg−1FDH h−1 and high stability. Our results show the technological feasibility of BES devices employing novel, nanostructured TiN-based supports, representing an important step in the optimization of these devices
    • 

    corecore