52 research outputs found

    Total sleep deprivation alters endothelial function in rats: a nonsympathetic mechanism

    Get PDF
    STUDY OBJECTIVES: Sleep loss is suspected to induce endothelial dysfunction, a key factor in cardiovascular risk. We examined whether sympathetic activity is involved in the endothelial dysfunction caused by total sleep deprivation (TSD). DESIGN: TWO GROUPS: TSD (24-h wakefulness), using slowly rotating wheels, and wheel control (WC). PARTICIPANTS: Seven-month-old male Wistar rats. INTERVENTIONS: Pharmacological sympathectomy (reserpine, 5 mg/kg, intraperitoneal), nitric oxide synthase (NOS) inhibition (N (G)-nitro-L-arginine, 20 mg/kg, intraperitoneally 30 min before experiment) and cyclooxygenase (COX) inhibition (indomethacin, 5 mg/kg, intraperitoneally 30 min before experiment). MEASUREMENTS AND RESULTS: In protocol 1, changes in heart rate (HR) and blood pressure were continuously recorded in the sympathectomized and non-sympathectomized rats. Blood pressure and HR increased during TSD in non-sympathectomized rats. In protocol 2, changes in skin blood flow (vasodilation) were assessed in the sympathectomized and non-sympathectomized rats using laser-Doppler flowmetry coupled with iontophoretic delivery of acetylcholine (ACh), sodium nitroprusside (SNP), and anodal and cathodal currents. ACh- and cathodal current-induced vasodilations were significantly attenuated after TSD in non-sympathectomized and sympathectomized rats (51% and 60%, respectively). In protocol 3, ACh-induced vasodilation was attenuated after NOS and COX inhibition (66% and 49%, respectively). Cathodal current-induced vasodilation decreased by 40% after COX inhibition. In TSD compared to WC a decrease in ACh-induced vasodilation was still observed after COX inhibition. No changes in SNP- and anodal current-induced vasodilation were detected. CONCLUSION: These results demonstrate that total sleep deprivation induces a reduction in endothelial-dependent vasodilation. This endothelial dysfunction is independent of blood pressure and sympathetic activity but associated with nitric oxide synthase and cyclooxygenase pathway alterations

    Effect of acute sleep deprivation on vascular function in healthy subjects

    Get PDF
    Sleep disorders are associated with inflammation and sympathetic activation, which are suspected to induce endothelial dysfunction, a key factor in the increased risk of cardiovascular disease. Less is known about the early effects of acute sleep deprivation on vascular function. We evaluated microvascular reactivity and biological markers of endothelial activation during continuous 40 h of total sleep deprivation (TSD) in 12 healthy men (29 +/- 3 yr). The days before [day 1 (D1)] and during TSD (D3), at 1200 and 1800, endothelium-dependent and -independent cutaneous vascular conductance was assessed by iontophoresis of acetylcholine and sodium nitroprusside, respectively, coupled to laser-Doppler flowmetry. At 0900, 1200, 1500, and 1800, heart rate (HR) and instantaneous blood pressure (BP) were recorded in the supine position. At D1, D3, and the day after one night of sleep recovery (D4), markers of vascular endothelial cell activation, including soluble intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and interleukin-6 were measured from blood samples at 0800. Compared with D1, plasma levels of E-selectin were raised at D3, whereas intercellular adhesion molecule-1 and interleukin-6 were raised at D4 (P < 0.05). The endothelium-dependent and -independent CVC were significantly decreased after 29 h of TSD (P < 0.05). By contrast, HR, systolic BP, and the normalized low-frequency component of HR variability (0.04-0.15 Hz), a marker of the sympathetic activity, increased significantly within 32 h of TSD (P < 0.05). In conclusion, acute exposure to 40 h of TSD appears to cause vascular dysfunction before the increase in sympathetic activity and systolic BP

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Working Group for the Bay of Biscay and the Iberian Waters Ecoregion (ICES WGBIE) (2-9 May 2109)

    Get PDF
    The ICES Working Group for the Bay of Biscay and the Iberian Waters Ecoregion (WGBIE) assesses the status of 23 stocks distributed from ICES Divisions 3.a–4.a though to Subarea 9, mostly distributed in Subareas 7, 8 and 9. The group was tasked with conducting assessments of stock status for 23 stocks using analytical, forecast methods or trends indicators to provide catch forecasts and a first draft of the ICES advice for 2019. For two of the Nephrops stocks updates were provided on catch data with the advice release delayed until October after the completion of the surveys used for the assessment. Analytical assessments using age-structured models were conducted for the northern stock of white anglerfish, the northern and southern stocks of megrim, four-spot megrim and sole in the Bay of Biscay. The two hake stocks and one southern stock of anglerfish were assessed using models that allow the use of length-structured data (no age data). A surplus-production model, without age or length structure, was used to assess the second southern stock of anglerfish and an age-length structure model was used for the European seabass in the Bay of Biscay. The state of stocks for which no analytical assessment could be performed was inferred from examination of catch, commercial LPUE or CPUE data and from survey information, where available. The northern stock of hake was benchmarked this year to incorporate discards into the model that were previously omitted. New reference points with the accepted benchmark assessment were proposed by the group and new proxy biomass reference points where proposed for black anglerfish in Division’s 7b-k, 8abd. A recurrent issue significantly constrained the group’s ability to fully address the terms of reference this year. Despite an ICES data call with a deadline of six weeks before the meeting, data for most stocks were submitted to ICES only two days before the start of the meeting and in one case 2 days after the meeting commenced. This delayed the process of having the data quality checked and the assessment completed before the start of the working group. This is an important matter of concerns for the working group members. The structure of the report is set out with section 1 presenting a summary of each stock, discussing general issues and conclusions. Section 2 provides descriptions of the relevant fishing fleets and surveys used in the assessment of the stocks. Sections 3–18 contains the single stock assessments

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

    Get PDF
    In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved
    corecore