866 research outputs found

    Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD209458b

    Full text link
    Four transits of the planet orbiting the star HD209458 were observed with the STIS spectrograph on board HST. The wavelength domain (1180-1710A) includes HI as well as CI, CII, CIV, NV, OI, SI, SiII, SiIII and SiIV lines. During the transits, absorptions are detected in HI, OI and CII (5+/-2%, 13+/-4.5% and 7.5+/-3.5%, respectively). No absorptions are detected for other lines. The 5% mean absorption over the whole HI Lyman alpha line is consistent with the previous detection at higher resolution (Vidal-Madjar et al. 2003). The absorption depths in OI and CII show that oxygen and carbon are present in the extended upper atmosphere of HD209458b. These species must be carried out up to the Roche lobe and beyond, most likely in a state of hydrodynamic escape.Comment: 6 pages, 4 figures, 1 table, submitted to ApJ Letters, revised version with slightly revisited absorption depth estimate

    Deep Galaxy survey at 6.75 micron with the ISO satellite

    Full text link
    Deep 6.75um mid-IR ISOCAM observations were obtained of the Canada-France Redshift Survey (CFRS) 1415+52 field with the Infrared Space Observatory. The identification of the sources with optical counterparts is described in detail, and a classification scheme is devised which depends on the S/N of the detection and the inverse probability of chance coincidence. 83% of the 54 ISOCAM sources are identified with Iab<23.5 counterparts. The (I-K)ab colors, radio properties, spectrophotometric properties and frequency of nuclear activity of these counterparts differ on average from those of typical CFRS galaxies. CFRS spectra are available for 21 of the sources which have Iab <= 22.5 (including 7 stars). Most of the strongest sources are stars or AGN. Among the non--stellar counterparts with spectra, 40% are AGNs, and 53% are galaxies that display star formation activity and/or significant contributions of A stars. The ISOCAM sources also display an IR excess, even when compared with heavily-reddened local starburst galaxies. An upper limit of 30% of extragalactic ISO sources could be at z>1 of the 44 S6.75um > 150uJy sources which are non-stellar (7 "spectroscopic" and 3 "photometric" stars excluded)Comment: 13 pages, 12 figures. Accepted for publication in A

    Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110]

    Full text link
    An error was detected in the code used for the analysis of the HD209458b sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P profile and briefly discuss the consequences.Comment: Published in Astronomy & Astrophysics, 533, C

    HST/STIS Optical Transit Transmission Spectra of the hot-Jupiter HD209458b

    Get PDF
    We present the transmission spectra of the hot-Jupiter HD209458b taken with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Our analysis combines data at two resolutions and applies a complete pixel-by-pixel limb-darkening correction to fully reveal the spectral line shapes of atmospheric absorption features. Terrestrial-based Na I and H I contamination are identified which mask the strong exoplanetary absorption signature in the Na core, which we find reaches total absorption levels of ~0.11% in a 4.4 Ang band. The Na spectral line profile is characterized by a wide absorption profile at the lowest absorption depths, and a sharp transition to a narrow absorption profile at higher absorption values. The transmission spectra also shows the presence of an additional absorber at ~6,250 Ang, observed at both medium and low resolutions. We performed various limb-darkening tests, including using high precision limb-darkening measurements of the sun to characterize a general trend of Atlas models to slightly overestimate the amount of limb-darkening at all wavelengths, likely due to the limitations of the model's one-dimensional nature. We conclude that, despite these limitations, Atlas models can still successfully model limb-darkening in high signal-to-noise transits of solar-type stars, like HD209458, to a high level of precision over the entire optical regime (3,000-10,000 Ang) at transit phases between 2nd and 3rd contact.Comment: 18 pages, 11 figures, Accepted to Ap

    Constraining the False Positive Rate for Kepler Planet Candidates with Multi-Color Photometry from the GTC

    Full text link
    Using the OSIRIS instrument installed on the 10.4-m Gran Telescopio Canarias (GTC) we acquired multi-color transit photometry of four small (Rp < 5 R_Earth) short-period (P < 6 days) planet candidates recently identified by the Kepler space mission. These observations are part of a program to constrain the false positive rate for small, short-period Kepler planet candidates. Since planetary transits should be largely achromatic when observed at different wavelengths (excluding the small color changes due to stellar limb darkening), we use the observed transit color to identify candidates as either false positives (e.g., a blend with a stellar eclipsing binary either in the background/foreground or bound to the target star) or validated planets. Our results include the identification of KOI 225.01 and KOI 1187.01 as false positives and the tentative validation of KOI 420.01 and KOI 526.01 as planets. The probability of identifying two false positives out of a sample of four targets is less than 1%, assuming an overall false positive rate for Kepler planet candidates of 10% (as estimated by Morton & Johnson 2011). Therefore, these results suggest a higher false positive rate for the small, short-period Kepler planet candidates than has been theoretically predicted by other studies which consider the Kepler planet candidate sample as a whole. Furthermore, our results are consistent with a recent Doppler study of short-period giant Kepler planet candidates (Santerne et al. 2012). We also investigate how the false positive rate for our sample varies with different planetary and stellar properties. Our results suggest that the false positive rate varies significantly with orbital period and is largest at the shortest orbital periods (P < 3 days), where there is a corresponding rise in the number of detached eclipsing binary stars... (truncated)Comment: 13 pages, 12 figures, 3 tables; revised for MNRA

    GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Get PDF
    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 % using the R500B grism (combined 5.2-sigma significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ~800{\AA} region surrounding the doublet. Combined with narrowband photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    NIKA: A millimeter-wave kinetic inductance camera

    Get PDF
    Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One possible solution is the kinetic inductance detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the N\'eel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around 1×10151 \times 10^{-15} W/ / Hz1/2^{1/2}. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.Comment: Accepted for publication in Astronomy & Astrophysic

    Large-scale variations of the dust optical properties in the Galaxy

    Full text link
    We present an analysis of the dust optical properties at large scale, for the whole galactic anticenter hemisphere. We used the 2MASS Extended Source Catalog to obtain the total reddening on each galaxy line of sight and we compared this value to the IRAS 100 microns surface brightness converted to extinction by Schlegel et al (1998). We performed a careful examination and correction of the possible systematic effects resulting from foreground star contamination, redshift contribution and galaxy selection bias. We also evaluated the contribution of dust temperature variations and interstellar clumpiness to our method. The correlation of the near-infrared extinction to the far-infrared optical depth shows a discrepancy for visual extinction greater than 1 mag with a ratio A_V(FIR) / A_V(gal) = 1.31 +- 0.06. We attribute this result to the presence of fluffy/composite grains characterized by an enhanced far--infrared emissivity. Our analysis, applied to half of the sky, provides new insights on the dust grains nature suggesting fluffy grains are found not only in some very specific regions but in all directions for which the visual extinction reaches about 1 mag.Comment: 10 pages, 11 figures, accepted for publication in A&
    corecore