160 research outputs found

    Exploration of the nature of the work done by United States Marshals Service employees in the district of Nevada

    Full text link
    For the first time in its 212 year history, the United States Marshals Service created a position for employees specifically designated to assist district offices experiencing administrative and operational problems. This move was promoted by a recruiting session in April of 2001 which was designed entirely to train individuals for the job entitled GS-082. This move is the result of the agency\u27s overall need for more labor. However, while these agents carry the title of Deputy Marshal , they do not require the same intense training of the standard GS-1811 agents, as their duties do not demand it. Employees in the Marshals Service are finding their tasks changed due to this expansion; This research involved a survey of the District of Nevada U.S. Marshals offices in order to explore the nature of the work done by their employees. This was done in the form of mail surveys. The Marshals Service is progressive, but other agencies have recently undergone similar expansion and change. The research explores the work done by Marshals Service employees through literature review and field surveys

    Ryšys tarp radikalios refleksijos, žmogaus laisvės ir etikos

    Get PDF
    The point of this article is that critical philosophical reflection is vital to human liberation. This sort of philosophy reveals the fundamental (or radical) connection between human action and any resulting reality. In this way, realism is undermined, including any claims that try to diminish utopian thought. New, more humane social imagery and embodied ethics can be proposed that elevate in importance the communal character of social life.Pagrindinis šio straipsnio argumentas yra tas, kad kritinė filosofinė refleksija yra esminė žmogaus laisvės prielaida. Šioji filosofinė paskata atveria kertinį, arba radikalų, ryšį tarp žmogaus veiksmo ir įgyvendinamos tikrovės. Šitaip apribojamas realizmas, įskaitant ir pastangas suvaržyti utopinę mintį. O kartu išlaisvinama žmogaus vaizduotė ir įkūnytoji etika, perteikianti bendruomeninį socialinio gyvenimo pobūdį

    Microwave Kinetic Inductance Detector (MKID) Camera Testing for Submillimeter Astronomy

    Get PDF
    Developing kilopixel focal planes for incoherent submm- and mm-wave detectors remains challenging due to either the large hardware overhead or the complexity of multiplexing standard detectors. Microwave kinetic inductance detectors (MKIDs) provide a efficient means to produce fully lithographic background-limited kilopixel focal planes. We are constructing an MKID-based camera for the Caltech Submillimeter Observatory with 576 spatial pixels each simultaneously sensitive in 4 bands at 230, 300, 350, and 400 GHz. The novelty of MKIDs has required us to develop new techniques for detector characterization. We have measured quasiparticle lifetimes and resonator Qs for detector bath temperatures between 200 mK and 400 mK. Equivalent lifetime measurements were made by coupling energy into the resonators either optically or by driving the third harmonic of the resonator. To determine optical loading, we use both lifetime and internal Q measurements, which range between 15,000 and 30,000 for our resonators. Spectral bandpass measurements confirm the placement of the 230 and 350 GHz bands. Additionally, beam maps measurements conform to expectations. The same device design has been characterized on both sapphire and silicon substrates, and for different detector geometries. We also report on the incorporation of new shielding to reduce detector sensitivity to local magnetic fields

    COSBO: The MAMBO 1.2 Millimeter Imaging Survey of the COSMOS Field

    Get PDF
    The inner 20 × 20 arcmin^2 of the COSMOS field was imaged at 250 GHz (1.2 mm) to an rms noise level of ~1 mJy per 11" beam using the Max-Planck Millimeter Bolometer Array (MAMBO-2) at the IRAM 30 m telescope. We detect 15 sources at significance between 4 and 7 σ, 11 of which are also detected at 1.4 GHz with the VLA with a flux density >24 μJy (3 σ). We identify 12 more lower significance mm sources based on their association with faint radio sources. We present the multifrequency identifications of the MAMBO sources, including VLA radio flux densities, optical and near-infrared identifications, as well as the XMM-Newton X-ray detection for two of the mm sources. We compare radio and optical photometric redshifts and briefly describe the host galaxy morphologies. The colors of the identified optical counterparts suggest most of them to be high-redshift (z ~ 2-3) star-forming galaxies. At least three sources appear lensed by a foreground galaxy. We highlight some MAMBO sources that do not show obvious radio counterparts. These sources could be dusty starburst galaxies at redshifts >3.5. The 250 GHz source areal density in the COSMOS field is comparable to that seen in other deep mm fields

    The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory

    Get PDF
    MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed

    NIKA: A millimeter-wave kinetic inductance camera

    Get PDF
    Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One possible solution is the kinetic inductance detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the N\'eel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around 1×10151 \times 10^{-15} W/ / Hz1/2^{1/2}. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.Comment: Accepted for publication in Astronomy & Astrophysic

    The Status of MUSIC: The Multiwavelength Sub/millimeter Inductance Camera

    Get PDF
    The Multiwavelength Sub/millimeter Inductance Camera (MUSIC) is a four-band photometric imaging camera operating from the Caltech Submillimeter Observatory (CSO). MUSIC is designed to utilize 2304 microwave kinetic inductance detectors (MKIDs), with 576 MKIDs for each observing band centered on 150, 230, 290, and 350 GHz. MUSIC’s field of view (FOV) is 14′ square, and the point-spread functions (PSFs) in the four observing bands have 45′′, 31′′, 25′′, and 22′′ full-widths at half maximum (FWHM). The camera was installed in April 2012 with 25% of its nominal detector count in each band, and has subsequently completed three short sets of engineering observations and one longer duration set of early science observations. Recent results from on-sky characterization of the instrument during these observing runs are presented, including achieved map- based sensitivities from deep integrations, along with results from lab-based measurements made during the same period. In addition, recent upgrades to MUSIC, which are expected to significantly improve the sensitivity of the camera, are described
    corecore