117 research outputs found

    The dark matter halo shape of edge-on disk galaxies - I. HI observations

    Get PDF
    This is the first paper of a series in which we will attempt to put constraints on the flattening of dark halos in disk galaxies. We observe for this purpose the HI in edge-on galaxies, where it is in principle possible to measure the force field in the halo vertically and radially from gas layer flaring and rotation curve decomposition respectively. In this paper, we define a sample of 8 HI-rich late-type galaxies suitable for this purpose and present the HI observations.Comment: Accepted for publication by Astronomy & Astrophysics. For a higher resolution version see http://www.astro.rug.nl/~vdkruit/jea3/homepage/12565.pd

    Constraints on the halo density profile using HI flaring in the outer Galaxy

    Get PDF
    The observed flaring of HI disk in the outer region of galaxies has been used in the past to determine the shape of the dark matter halo. Previous studies based on this concept suggest a slightly oblate halo (axis ratio ~ 0.8) for our Galaxy. We reinvestigate this problem by calculating the HI scaleheight in the outer Galaxy to a larger radial distance, and by studying its dependence on the shape and the density profile of the halo. We find that a simple isothermal infinite halo of any shape- oblate or prolate, is not able to account for the observed flaring. Instead we show that a spherical halo with density falling faster than isothermal halo in the outer region provides a better fit to the observed HI flaring as well as the observed rotation curve of our Galaxy. These halos have about 95% of their mass within a few hundreds of kpc. For R_solar = 8.5 kpc and \Theta_solar = 220 km/s, the central density and core radius can be constrained to the range \rho_0 = 0.035 - 0.06 M_sun/pc^3 and R_c = 8 - 10 kpc. Our claim for such 'finite-sized' spherical halos is supported by recent literature on numerical simulation studies of halo formation as well as analyses of SDSS data.Comment: Accepted for publication in A &

    The dark matter halo shape of edge-on disk galaxies - II. Modelling the HI observations: methods

    Get PDF
    This is the second paper of a series in which we attempt to put constraints on the flattening of dark halos in disk galaxies. For this purpose, we observe the HI in edge-on galaxies, where it is in principle possible to measure the force field in the halo vertically and radially from gas layer flaring and rotation curve decomposition respectively. To calculate the force fields, we need to analyse the observed XV diagrams to accurately measure all three functions that describe the planar kinematics and distribution of a galaxy: the radial HI surface density, the rotation curve and the HI velocity dispersion. In this paper, we discuss the improvements and limitations of the methods previously used to measure these HI properties. We extend the constant velocity dispersion method to include determination of the HI velocity dispersion as a function of galactocentric radius and perform extensive tests on the quality of the fits. We will apply this 'radial decomposition XV modelling method' to our HI observations of 8 HI-rich, late-type, edge-on galaxies in the third paper of this series.Comment: Accepted for publication by Astronomy & Astrophysics. For a higher resolution version see http://www.astro.rug.nl/~vdkruit/jea3/homepage/12566.pd

    Case Notes

    Get PDF
    For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified(1-5). These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.NASA NNH15ZDA001N NNX17AI64G Australian Research Council Centre of Excellence for All-sky Astrophysics CE11000102

    The mass surface density in the local disk and the chemical evolution of the Galaxy

    Full text link
    We have studied the effect of adopting different values of the total baryonic mass surface density in the local disk at the present time in a model for the chemical evolution of the Galaxy. We have compared our model results with the G-dwarf metallicity distribution, the amounts of gas, stars, stellar remnants, infall rate and SN rate in the solar vicinity, and with the radial abundance gradients and gas distribution in the disk. This comparison strongly suggests that the value of the total baryonic mass surface density in the local disk which best fits the observational properties should lie in the range 50-75 Msun pc-2, and that values outside this range should be ruled out.Comment: 6 pages, LaTeX, 3 figures, accepted for publication in the Astrophysical Journal, uses emulateapj.st

    A Pressure Anomaly for HII Regions in Irregular Galaxies

    Get PDF
    The pressures of giant HII regions in 6 dwarf Irregular galaxies are a factor of ~10 larger than the average pressures of the corresponding galaxy disks, obtained from the stellar and gaseous column densities. Either the visible HII regions in these dwarfs are all so young that they are still expanding, or there is an unexpected source of disk self-gravity that increases the background pressure. We consider the possibility that the additional self-gravity comes from disk dark matter, but suggest this is unlikely because the vertical scale heights inferred for Irregular galaxies are consistent with the luminous matter alone. Some of the HII region overpressure is probably the result of local peaks in the gravitational field that come from large gas concentrations, many of which are observed directly. These peaks also explain the anomalously low average column density thresholds for star formation that were found earlier for Irregular galaxies, and they permit the existence of a cool HI phase as the first step toward dense molecular cores. Many of the HII regions could also be so strongly over-pressured that they will expand for a long time. In this case, the observed population would be only 7% of the total, and the aging HII regions, now too faint to see, should occupy nearly the entire dwarf galaxy volume. Such prolonged HII region expansion would explain the origin of the giant HI shells that are seen in these galaxies, and account for the lack of bright central clusters inside these shells.Comment: 27 pages, 4 figures, Astrophysical Journal, 540, Sep 10, 2000, in pres

    The spiral structure of the Galaxy revealed by CS sources and evidence for the 4:1 resonance

    Full text link
    We present a map of the spiral structure of the Galaxy, as traced by molecular CS emission associated with IRAS sources which are believed to be compact HII regions. The CS line velocities are used to determine the kinematic distances of the sources, in order to investigate their distribution in the galactic plane. This allows us to use 870 objects to trace the arms, a number larger than that of previous studies based on classical HII regions. The distance ambiguity of the kinematic distances, when it exists, is solved by different procedures, including the latitude distribution and an analysis of the longitude-velocity diagram. The well defined spiral arms are seen to be confined inside the co-rotation radius, as is often the case in spiral galaxies. We identify a square-shaped sub-structure in the CS map with that predicted by stellar orbits at the 4:1 resonance (4 epicycle oscillations in one turn around the galactic center). The sub-structure is found at the expected radius, based on the known pattern rotation speed and epicycle frequency curve. An inner arm presents an end with strong inward curvature and intense star formation that we tentatively associate with the region where this arm surrounds the extremity of the bar, as seen in many barred galaxies. Finally, a new arm with concave curvature is found in the Sagitta to Cepheus region of the sky

    Taking the Measure of the Universe: Precision Astrometry with SIM PlanetQuest

    Get PDF
    Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument that delivers parallaxes at about 4 microarcsec on targets as faint as V = 20, differential accuracy of 0.6 microarcsec on bright targets, and with flexible scheduling. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed all of the enabling technologies needed for the flight instrument in 2005. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. SIM will search for planets with masses as small as an Earth orbiting in the `habitable zone' around the nearest stars using differential astrometry, and could discover many dozen if Earth-like planets are common. It will be the most capable instrument for detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion measurements, SIM will probe the galactic mass distribution and the formation and evolution of the Galactic halo. (abridged)Comment: 54 pages, 28 figures, uses emulateapj. Submitted to PAS
    • 

    corecore