132 research outputs found
SinemurianâPliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin: Calibration to the ammonite biozonation of NW Europe
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Available online 12 December 2016The biostratigraphy of Sinemurian to lower Toarcian calcareous nannofossils has been investigated in the Sancerre-Couy core (Paris Basin), which contains a mixed assemblage of species with affinities to the northern and southern areas of the peri-tethyan realm, thus allowing for the use and calibration of the Mediterranean Province (Italy/S France) and NW Europe (UK) biozonation schemes. This study is based on semi-quantitative analyses of the calcareous nannofossil assemblage performed on 145 samples and the recorded bioevents are calibrated to the NW European Ammonite Zonation and to a new organic carbon isotope curve based on 385 data points. The main bioevents, i.e. the first occurrences of Parhabdolithus liasicus, Crepidolithus pliensbachensis, Crepidolithus crassus, Mitrolithus lenticularis, Similiscutum cruciulus sensu lato, Lotharingius hauffii, Crepidolithus cavus and Lotharingius sigillatus as well as the last occurrence of Parhabdolithus robustus, have been identified. However, we show that a large number of standard biostratigraphic markers show inconsistent occurrences at the base and top of their range, possibly accounting for some of the significant discrepancies observed between the different domains. In addition to the nine main bioevents used for the biozonation of the core, we document an additional 50 distinct bioevents, evaluate their reliability and discuss their potential significance by comparison to previous studies. A total of five significant negative organic carbon isotope excursions are identified and defined in the Paris Basin including the well-documented SinemurianâPliensbachian boundary event. One positive excursion is further defined in the Pliensbachian interval. Our calibration of high-resolution calcareous nannofossil biostratigraphy to ammonite biostratigraphy and organic carbon isotopes represents a new stratigraphic reference for the Lower Jurassic series
Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) 2 inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe)
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Available online 17 January 2017The Early Jurassic was broadly a greenhouse climate period that was punctuated by short
warm and cold climatic events, positive and negative excursions of carbon isotopes, and
episodes of enhanced organic matter burial. Clay minerals from Pliensbachian sediments
recovered from two boreholes in the Paris Basin, are used here as proxies of detrital supplies,
runoff conditions, and palaeoceanographic changes. The combined use of these minerals with
ACCEPTED MANUSCRIPT
ACCEPTED MANUSCRIPT
stable isotope data (C-O) from bulk carbonates and organic matter allows palaeoclimatic
reconstructions to be refined for the Pliensbachian. Kaolinite/illite ratio is discussed as a
reliable proxy of the hydrological cycle and runoff from landmasses. Three periods of
enhanced runoff are recognised within the Pliensbachian. The first one at the SinemurianPliensbachian
transition shows a significant increase of kaolinite concomitant with the
negative carbon isotope excursion at the so-called Sinemurian Pliensbachian Boundary Event
(SPBE). The Early/Late Pliensbachian transition was also characterised by more humid
conditions. This warm interval is associated with a major change in oceanic circulation during
the Davoei Zone, likely triggered by sea-level rise; the newly created palaeogeography,
notably the flooding of the London-Brabant Massif, allowed boreal detrital supplies, including
kaolinite and chlorite, to be exported to the Paris Basin. The last event of enhanced runoff
occurred during the late Pliensbachian (Subdonosus Subzone of the Margaritatus Zone),
which occurred also during a warm period, favouring organic matter production and
preservation. Our study highlights the major role of the London Brabant Massif in influencing
oceanic circulation of the NW European area, as a topographic barrier (emerged lands) during
periods of lowstand sea-level and its flooding during period of high sea-level. This massif was
the unique source of smectite in the Paris Basin. Two episodes of smectite-rich sedimentation
(âsmectite eventsâ), coincide with regressive intervals, indicating emersion of the London
Brabant Massif and thus suggesting that an amplitude of sea-level change high enough to be
linked to glacio-eustasy. This mechanism is consistent with sedimentological and
geochemical evidences of continental ice growth notably during the Latest Pliensbachian
(Spinatum Zone), and possibly during the Early Pliensbachian (late Jamesoni/early Ibex
Zones).The study was supported by the âAgence Nationale pour la Gestion des DĂ©chets Radioactifsâ (AndraââFrench National Radioactive Waste Management Agency)
Calibrating ensemble reliability whilst preserving spatial structure
Ensemble forecasts aim to improve decision-making by predicting a set of possible outcomes. Ideally, these would provide probabilities which are both sharp and reliable. In practice, the models, data assimilation and ensemble perturbation systems are all imperfect, leading to deficiencies in the predicted probabilities. This paper presents an ensemble post-processing scheme which directly targets local reliability, calibrating both climatology and ensemble dispersion in one coherent operation. It makes minimal assumptions about the underlying statistical distributions, aiming to extract as much information as possible from the original dynamic forecasts and support statistically awkward variables such as precipitation. The output is a set of ensemble members preserving the spatial, temporal and inter-variable structure from the raw forecasts, which should be beneficial to downstream applications such as hydrological models. The calibration is tested on three leading 15-d ensemble systems, and their aggregation into a simple multimodel ensemble. Results are presented for 12 h, 1° scale over Europe for a range of surface variables, including precipitation. The scheme is very effective at removing unreliability from the raw forecasts, whilst generally preserving or improving statistical resolution. In most cases, these benefits extend to the rarest events at each location within the 2-yr verification period. The reliability and resolution are generally equivalent or superior to those achieved using a Local Quantile-Quantile Transform, an established calibration method which generalises bias correction. The value of preserving spatial structure is demonstrated by the fact that 3Ă3 averages derived from grid-scale precipitation calibration perform almost as well as direct calibration at 3Ă3 scale, and much better than a similar test neglecting the spatial relationships. Some remaining issues are discussed regarding the finite size of the output ensemble, variables such as sea-level pressure which are very reliable to start with, and the best way to handle derived variables such as dewpoint depression
Million-year-scale alternation of warmâhumid and semi-arid periods as a mid-latitude climate mode in the Early Jurassic (late Sinemurian, Laurasian Seaway)
Clay mineral and stable isotope (C, O) data are reported from the upper Sinemurian (Lower Jurassic) of the Cardigan Bay Basin (LlanbedrâMochras Farm borehole, northwestern Wales) and the Paris Basin (Montcornet borehole, northern France) to highlight the prevailing environmental and climatic conditions. In both basins, located at similar palaeolatitudes of 30â35ââN, the clay mineral assemblages comprise chlorite, illite, illiteâsmectite mixed layers (R1 I-S), smectite, and kaolinite in various proportions. Because the influence of burial diagenesis and authigenesis is negligible in both boreholes, the clay minerals are interpreted to be derived from the erosion of the Caledonian and Variscan massifs, including their basement and pedogenic cover. In the Cardigan Bay Basin, the variations in the proportions of smectite and kaolinite are inversely related to each other through the entire upper Sinemurian. As in the succeeding Pliensbachian, the upper Sinemurian stratigraphic distribution reveals an alternation of kaolinite-rich intervals reflecting strong hydrolysing conditions and smectite-rich intervals indicating a semi-arid climate. Kaolinite is particularly abundant in the upper part of the obtusum zone and in the oxynotum zone, suggesting more intense hydrolysing conditions likely coeval with warm conditions responsible for an acceleration of the hydrological cycle. In the north of the Paris Basin, the succession is less continuous compared to the Cardigan Bay Basin site, as the oxynotum zone and the upper raricostatum zone are either absent or highly condensed. The clay assemblages are dominantly composed of illite and kaolinite without significant stratigraphic trends, but a smectite-rich interval identified in the obtusum zone is interpreted as a consequence of the emersion of the LondonâBrabant Massif following a lowering of sea level. Following a slight negative carbon isotope excursion at the obtusumâoxynotum zone transition, a long-term decrease in ÎŽ13Corg from the late oxynotumâearly raricostatum zones is recorded in the two sites and may precede or partly include the negative carbon isotope excursion of the SinemurianâPliensbachian Boundary Event, which is recognised in most basins worldwide and interpreted to signify a late pulse of the Central Atlantic Magmatic Province volcanism
An Earth-system prediction initiative for the twenty-first century
International audienceSome scientists have proposed the Earth-System Prediction Initiative (EPI) at the 2007 GEO Summit in Cape Town, South Africa. EPI will draw upon coordination between international programs for Earth system observations, prediction, and warning, such as the WCRP, WWRP, GCOS, and hence contribute to GEO and the GEOSS. It will link with international organizations, such as the International Council for Science (ICSU), Intergovernmental Oceanographic Commission (IOC), UNEP, WMO, and World Health Organization (WHO). The proposed initiative will provide high-resolution climate models that capture the properties of regional high-impact weather events, such as tropical cyclones, heat wave, and sand and dust storms associated within multi-decadal climate projections of climate variability and change. Unprecedented international collaboration and goodwill are necessary for the success of EPI
Recommended from our members
Intercomparison of methods of coupling between convection and large-scale circulation: 1. Comparison over uniform surface conditions
As part of an international intercomparison project, a set of single column models (SCMs) and cloud-resolving models (CRMs) are run under the weak temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistent implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics.
CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation.
When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations
- âŠ