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ABSTRACT

Ensemble forecasts aim to improve decision-making by predicting a set of possible outcomes. Ideally, these

would provide probabilities which are both sharp and reliable. In practice, the models, data assimilation and

ensemble perturbation systems are all imperfect, leading to deficiencies in the predicted probabilities. This

paper presents an ensemble post-processing scheme which directly targets local reliability, calibrating both

climatology and ensemble dispersion in one coherent operation. It makes minimal assumptions about the

underlying statistical distributions, aiming to extract as much information as possible from the original

dynamic forecasts and support statistically awkward variables such as precipitation. The output is a set of

ensemble members preserving the spatial, temporal and inter-variable structure from the raw forecasts, which

should be beneficial to downstream applications such as hydrological models. The calibration is tested on three

leading 15-d ensemble systems, and their aggregation into a simple multimodel ensemble. Results are presented

for 12 h, 18 scale over Europe for a range of surface variables, including precipitation. The scheme is very

effective at removing unreliability from the raw forecasts, whilst generally preserving or improving statistical

resolution. In most cases, these benefits extend to the rarest events at each location within the 2-yr verification

period. The reliability and resolution are generally equivalent or superior to those achieved using a Local

Quantile-Quantile Transform, an established calibration method which generalises bias correction. The value

of preserving spatial structure is demonstrated by the fact that 3�3 averages derived from grid-scale

precipitation calibration perform almost as well as direct calibration at 3�3 scale, and much better than a

similar test neglecting the spatial relationships. Some remaining issues are discussed regarding the finite size of

the output ensemble, variables such as sea-level pressure which are very reliable to start with, and the best way

to handle derived variables such as dewpoint depression.

Keywords: Brier Skill Score, climatological thresholds, Ensemble Copula Coupling, Local Quantile-Quantile

Transform, medium range, multimodel ensemble, rank histogram, TIGGE

1. Introduction

Ensemble weather forecasts aim to improve decision-

making by predicting the probability of each possible

outcome. The quality of a probabilistic forecast can be

split into two key attributes: First, the probabilities should

be statistically reliable in the sense that an event assigned

probability p should occur in a fraction p of such cases.

This allows users to obtain the maximum benefit by acting

when the forecast probability exceeds the ratio of the cost

of taking action to the loss it would prevent (Richardson,

2000). Second, the ensemble should provide as much dis-

crimination as possible between situations in which the

event is more or less likely. This statistical resolution

ensures the forecasts provide more information than

always forecasting a probability equal to the climato-

logical frequency of the event (which would be perfectly

reliable). Measures of forecast performance such as the

Brier Skill Score (BSS) can be decomposed in this way

(Wilks, 2006).

Real forecasting systems run in constrained time with

finite computing resources and imperfect models, observa-

tions, boundary conditions, data assimilation and pertur-

bation schemes. These limit their fundamental ability to

distinguish whether or not an event will occur. They also

limit the statistical reliability of the forecast probabilities.

Statistical calibration schemes use historic measurements of

forecast performance to make adjustments which aim to

improve upon the raw forecasts. One might expect limited

scope for improving statistical resolution, since the calibra-

tion cannot introduce case-specific information that is not
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contained in the underlying forecast. However, the training

data can provide a mapping from raw probabilities to

actual observed frequencies, so one might hope to sig-

nificantly reduce statistical unreliability whilst also preser-

ving the resolution of the raw forecasts. This is the core

aim of the calibration work presented in this paper.

A variety of ensemble calibration methods have been

proposed in the literature. Examples include simple bias

correction (e.g. Johnson and Swinbank, 2009),more detailed

quantile mapping (Bremnes, 2007), inflation (Johnson and

Swinbank, 2009; Flowerdew and Bowler, 2011), nearby

locations and thresholds (Atger, 2001), direct mapping

of forecast probabilities to past observed frequencies (Primo

et al., 2009), forecast assimilation (Coelho et al., 2006),

methods such as Bayesian Model Averaging (Raftery et al.,

2005, Fraley et al., 2010) that dress each ensemble member

with a kernel, methods such as Non-homogeneous Gaussian

regression (NGR; Gneiting et al., 2005, Hagedorn et al.,

2008) and logistic regression (Hamill et al., 2008; Wilks,

2009) that map raw forecast quantities to parameters

of a fixed output distribution, analogue methods (Hamill

and Whitaker, 2006; Stensrud and Yussouf, 2007) and

neural networks. Applequist et al. (2002) compares a variety

of similar methods applied to deterministic input. The

various approaches differ in the properties targeted (bias,

climatology, spread, reliability, . . .), the predictors used

(ensemble members, raw probabilities, ensemble mean/

spread, . . .), the form of the output (ensemble members,

probabilities to exceed specific thresholds, a parameterised

probability distribution, . . .), the extent of the training

required (a few recent days/weeks through to years of

reforecasts), and whether the method attempts to add

high-resolution detail to low-resolution input.

Precipitation highlights a number of issues which need to

be addressed by a generic calibration scheme. It has an

awkward distribution, which is skewed, cannot be negative,

and includes finite probability of zero precipitation. This

last point prevents any direct transformation of precipita-

tion into a Gaussian variable. Simple methods such as bias

correction and perturbation scaling are also awkward to

apply to variables with these characteristics.

Most calibration methods focus on one output at a time,

without considering spatial, temporal, or inter-variable

relationships. However, these relationships are required to

produce fields and timeseries which are physically realistic,

and to support the use of calibrated data in downstream

systems. A hydrological model, for instance, depends on

space�time integrals of rainfall, and its relationship to

variables such as temperature. The importance of spatial

relationships is particularly obvious when trying, as here, to

apply calibration to gridded data, as opposed to predic-

tions for a set of discrete sites.

This paper presents a calibration method that directly

targets the statistical reliability of the forecast probabilities.

This should implicitly calibrate both climatology and

spread, since these involve integrals of the case-specific

probability distributions. The scheme was originally devel-

oped for precipitation (Flowerdew, 2012), and makes

minimal assumptions about the underlying statistical dis-

tributions. Instead, it tries to extract as much information

as possible from the original dynamic ensemble forecasts.

The implied probability distribution is mapped back onto

the original ensemble in order to preserve its spatial,

temporal and inter-variable structure. The net effect is to

slightly adjust the original ensemble members so that

the probabilities become statistically reliable. The present

paper examines the extent to which this general approach is

effective for a wider range of surface variables, including

temperature, wind speed, pressure and dewpoint depres-

sion. It considers a wider European area than was possible

with the UK-focussed dataset used in Flowerdew (2012),

and explores performance for more extreme thresholds.

Whilst reliability calibration (Primo et al., 2009) and the

ensemble reconstruction method (Bremnes, 2007; Schefzik

et al., 2013) have been considered by previous authors, the

particular combination, the binned approach to reliability

calibration, the way in which training data are aggregated

over space, and the details of the verification all appear to

be novel.

The rest of this paper is laid out as follows. Section 2

describes the reliability calibration method, and a general-

ised bias correction against which it is compared. Section 3

describes the forecast and observation data used to train

and test the calibration schemes. The results are shown

in section 4, including performance for moderate and more

extreme thresholds, as well as the impact on spatial

averages and a derived variable. Conclusions and sugges-

tions for future work are given in section 5.

2. Calibration methods

This section describes the two calibration methods which

are tested in this paper. The main reliability calibration

method is presented in section 2.2. Before this, section 2.1

introduces a simpler, established method for mapping

between the forecast and observed climatologies. This is

used as a benchmark to ensure the reliability-based ap-

proach is competitive. The circumstances in which clima-

tology calibration is more or less successful also help to

illustrate the relative importance of biases as compared to

other systematic errors in different situations. Some com-

mon issues regarding the organisation of training data

are discussed in section 2.3.
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2.1. Climatology calibration

One of the most basic systematic errors which a calibration

scheme might attempt to correct is consistent over- or

under-prediction of the observed value. For unbounded

variables like temperature, one might simply consider the

overall mean difference between forecast and observations

(bias), as in Johnson and Swinbank (2009). For bounded

variables such as precipitation, more elaborate approaches

are needed to avoid unphysical negative values and leave

finite probability at zero precipitation rather than some

other value. More generally, there is no guarantee that the

same shift is appropriate for all forecast values; indeed

comparison of forecast and observed climatology along

the lines of Flowerdew (2012) shows different offsets for

different quantiles.

One could attempt to solve this problem by conditioning

the bias on ranges of the forecast value. However, this

convolves true bias with forecast uncertainty, due to the

‘regression to the mean’ effect. A more satisfactory non-

parametric approach is to match quantiles of the forecast

and observed climatology. This simply assumes that they

should represent the same set of physical states and the

mapping should be monotonic. If the 95th percentile of

12 h precipitation from the model was 6.2mm, forecasts

of 6.2mm would be mapped to the corresponding quantile

from observations, which might be 6.8mm. This prin-

ciple is known as the Local Quantile-Quantile Transform

(Bremnes, 2007).

The specific ‘climatology calibration’ tested below is

implemented as follows, based on a year of training data.

Whilst this will not be enough to accurately estimate the

outer quantiles of long-term climatology, it is hoped that

the model and observations represent sufficiently similar

sub-climatologies driven by the boundary conditions af-

fecting this matched period that the mapping from forecast

to observed values can be recovered. The training data

is divided into 3-month blocks. Within each block, the

1,3,5,10,. . .,90,95,97,99th percentiles of the (2n�1)2-

gridpoint domain around each gridpoint are identified,

separately for each data source and lead time. The quantity

n is referred to as the degree of spatial padding, and

its optimal value is probed by the tests presented in section

4.3 below. It is important that the forecast climatologies

be restricted to observed points, particularly with larger

values of n. This ensures that results near the edges of the

observation domain represent the same set of locations. On

the other hand, no attempt is made to exclude forecast

dates which lack corresponding observations, since these

should not introduce any systematic difference in climatol-

ogy, and one does not expect forecasts at longer lead times

to precisely match the timing of observed events.

The final calibration at each gridpoint is based on the

mean over the four 3-month blocks of the local quantile

values. An average of 3-month quantiles was chosen over

12-month quantiles to make the result equally applicable

to all seasons and avoid the sampling noise that might

otherwise arise from results being dominated by the most

extreme seasons. The forecast values are calibrated by linear

interpolation/extrapolation between the matching percen-

tiles of forecast and observed climatology [in the language

of eq. (1) below, if these climatologies are given by vectorsCf

and Co respectively, and x is the raw forecast value, then the

calibrated value is L(Co,Cf,x)]. The percentile spacings were

chosen to explore the resolved shape of the climatology

mapping, whilst hopefully limiting noise sufficiently that

extrapolation at the extremes remains plausible.

2.2. Reliability calibration

The reliability calibration scheme, which forms the main

focus of this paper, is illustrated in Fig. 1. It consists of

a series of steps which are described in the following

subsections.

2.2.1. Accumulation of training data. The core of the

calibration scheme constructs a series of mappings from

raw forecast probability to observed event frequency, for a

set of pre-specified thresholds appropriate to each variable.

The criteria for choosing these thresholds are discussed

in section 2.2.5 below. The training accumulates the sample

count, mean forecast probability and observed event

frequency for each gridpoint, lead time, threshold, and

forecast probability bin. Splitting the training data by

location and forecast probability provides a more situa-

tion-specific calibration. However, if the individual sample

counts become too small, the adjustments will contain more

noise than signal and thus make the forecasts worse rather

than better. To reduce both statistical noise and memory

usage, the standard configuration uses just five probability

bins: three across the main probability range and one each

for cases where zero or all members exceed the threshold.

This partition was motivated by the observation that most

reliability diagrams (including those shown in Fig. 1) are

near-linear across the main probability range, but some-

times show jumps for the case where zero or all members

forecast the event. This is particularly common at short

lead times, presumably arising from underspread. Early

tests showed a small benefit of this arrangement compared

to five equally-spaced probability bins.

The reliability calibration scheme attempts to balance

the remaining statistical noise against the locality of the

training data through a procedure of dynamic spatial

aggregation. The final statistics for each probability bin

of each threshold are averaged over a square domain
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centred on each gridpoint, which is made just large enough

to provide at least 200 cases where the forecast probability

fell within that bin. This means that common situations

are trained on locally relevant data, whilst rare situations

draw data from a wider area, since a bland but relatively

noise-free adjustment is much better than a local but noisy

one. The standard configuration allows the use of data

up to 208 away. Bins with fewer than 200 samples at the

maximum padding are discarded (an improved scheme

might combine them with neighbouring probability bins).

The 208 limit was introduced out of concern that training

which was too non-local might be detrimental. In most

cases tested, the move from 208 to whole-domain maximum

padding has little impact other than to increase the

computational cost.

For n independent samples, the number of times an event

with underlying probability f would be observed follows

a binomial distribution with variance nf(1-f). Expressed

as a fraction of the expected number of events (nf), the

standard error is therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /ð Þ=n/

p
. 200 samples thus

give about a 7% error on f�0.5 and a 20% error on

f�0.1, rising to 1=
ffiffiffiffiffiffi
n/
p

as f00. A more elaborate scheme

focussed on equalising the fractional error in the calibrated

probabilities might derive the minimum sample count as a

function of the forecast probability or observed event

frequency.

Aside from locality, the spatial aggregation procedure

takes no account of gridbox characteristics such as orogra-

phy or whether they lie over land or sea. A more elaborate

scheme might generalise the spatial distance to a gridbox

similarity index that included such factors. Calibration

would then be based on the most similar locations consistent

with the required sample count, rather than relying on

distance alone. Hamill et al. (2008) suggest some criteria

for identifying ‘similar’ locations.

2.2.2. Calibrating univariate reliability. Having obtained

the spatially-aggregated training data, the calibration of the

target forecast proceeds as follows. For each threshold,

Fig. 1. An illustration of how the reliability calibration method modifies one gridpoint from a single forecast source. (1) The raw

ensemble members imply a cumulative density function (CDF; stepped line in upper half). The training (lower half) provides reliability

(solid) and sample count (dashed, using the logarithmic scale to the right of each subplot) for this forecast source against a fixed set of

thresholds. (2) This allows the raw probability at each threshold (purple circles) to be mapped to the corresponding observed frequency (red

crosses), as indicated by the blue arrows within each reliability diagram. (3) Replicated in the upper half of the diagram, these results form a

calibrated CDF (red). Note the opposite sense in which reliability diagrams (probability to exceed a threshold) and CDFs (probability to be

less than or equal to a threshold) are traditionally defined. (4) New members (green horizontal lines at top left) are assigned to equally

divide the probability range, in the same order as the raw ensemble members.
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gridpoint and lead time, the training provides vectors S and

R, respectively, giving the mean forecast probability and

observed event frequency in bins defined by the forecast

probability. This reliability diagram provides the required

mapping from raw forecast probability to the actual

frequency with which the event occurred in the training

sample when that probability was forecast, as illustrated

by the blue arrows inside the lower panels of Fig. 1. The

raw probability, p, from the target forecast is calculated

as the fraction of members which exceed the threshold.

Where this coincides exactly with an element of S, the

calibrated probability p̂ is just the corresponding element

of R. Probabilities between and beyond the mean values in

S are handled using interpolation/extrapolation, taking a

linear approach for simplicity:

p̂ ¼ LðR; S; pÞ ¼ Rl þ
p� Sl

Sh � Sl

ðRh � RlÞ: (1)

The subscripts l and h denote the low and high bin

indices upon which the interpolation/extrapolation is

based. Where possible, these will be chosen so that Sl is

the nearest available value below p and Sh the nearest larger

value. Where extrapolation is required, the two bins with

mean forecast probability closest to p (on whichever side)

will be used, and the resulting probability capped at 0 or 1

if required. Where only one bin exceeded the minimum

sample count, p̂ is simply set to that observed (approxi-

mately climatological) event frequency. For locations with

insufficient observations to reach the minimum sample

count in any bin, no calibrated forecast is produced.

Since each calibrated probability is based on observed

event frequencies, the result should be reliable by construc-

tion, within the limits of stationarity and statistical noise.

If the calibration process stopped at this point, one could

produce maps of calibrated probabilities to exceed the pre-

defined thresholds, but there would be no direct informa-

tion on individual member values or spatial relationships.

2.2.3. Formation of calibrated CDF. The rest of the

process regards these calibrated probabilities as providing

a calibrated cumulative density function (CDF) for each

gridpoint and lead time. This is represented by the red line

in the upper half of Fig. 1. Since each threshold is

calibrated with a different set of predictors, it is possible

for the calibrated probabilities to be non-monotonic as a

function of threshold. In practice, the scheme appears

to have sufficient control over statistical noise that this

effect is small (with a mean probability decrease of about

0.015 across the approximately 5% of cases which were

affected in early tests on precipitation). The current im-

plementation sorts the probabilities to force them to be

monotonic, though the detailed treatment seems to have

negligible impact on probabilistic scores. This gives

a vector of probabilities ~p corresponding to the vector of

training thresholds T.

2.2.4. Mapping back to ensemble members. The next

step identifies a set of ensemble member values to represent

the calibrated CDF. These are chosen to lie at the series

of quantiles, q, that divide the CDF into blocks of equal

probability, following the theory behind rank histograms

(Hamill and Colucci, 1997):

qi ¼ i=ð1þNÞ; i ¼ 1; . . . ;N; (2)

where N is the number of ensemble members. These

quantiles are marked by the green horizontal lines at the

top left of Fig. 1. The corresponding forecast values, x̂,

are obtained by linear interpolation between the calibrated

thresholds:

x̂si
¼ LðT; ~p; qiÞ; (3)

using the formula, L, defined in eq. (1). This is indicated

by where the green arrows meet the red line in Fig. 1.

To provide a clean distinction between zero and non-zero

precipitation, all results below the lowest threshold are

mapped to zero for this variable. To close the remaining

ends of the distribution, the cumulative probability is set to

0 or 1 as appropriate at outer boundaries which are pre-

defined for each variable, and listed in Table 1 below. A

more elaborate scheme might fit an extreme value distribu-

tion to close these ends of the CDF (e.g. Ferro, 2007).

The key to preserving spatial, temporal and inter-variable

structure is how this set of values is distributed between

ensemble members. One can always construct ensemble

Table 1. The number (nThresh) and values of the training thresholds, and the output value ranges used by the reliability calibration

scheme for each variable considered in this paper

Variable nThresh Training thresholds Value range Units

12 h-accumulated precipitation 12 0.025, 0.05, 0.1, . . . 12.8, 25.6, 51.2 0, 102.4 mm

2m temperature/dewpoint 73 �35, �30, �29, �28, . . . 38, 39, 40, 45 �40, 50 8C
2m dewpoint depression 68 0, 0.1, . . . 0.9, 1.0, 1.5, . . . 9.5, 10, 11, . . . 48, 49 0, 50 8C
10m wind speed 68 0, 0.1, . . . 0.9, 1.0, 1.5, . . . 9.5, 10, 11, . . . 48, 49 0, 50 ms�1

Mean-sea-level pressure 91 960, 961, . . . 1049, 1050 940, 1070 hPa
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members by sampling from the calibrated probability

density function (PDF), but this would produce spatially

noisy fields lacking the correct correlations. Instead, eq. (3)

assigns quantile qi to the ensemble member with index

si, which has the ith lowest value in the original forecast. The

member with the locally highest rainfall remains locally

highest, but with a calibrated rainfall magnitude. In this

way, despite going via the intermediate formulation of

probabilities to exceed thresholds, the overall calibration

procedure amounts to a set of spatially coherent adjustments

to the ensemble member values, preserving their order at

each point. This is similar in appearance to what schemes

like bias correction and inflation (which operate directly

on ensemble member values) might produce, except that

the adjustments are chosen to produce reliable probabilities.

A similar ensemble reconstruction step was proposed by

Bremnes (2007), and more recently by Schefzik et al. (2013),

who related it to the mathematical theory of copulas.

These applications typically use parametric approaches

to the underlying univariate calibration. One attractive

feature of the non-parametric, reliability-based approach

presented here is that if the original forecasts are found to

be perfectly reliable, they will be left unchanged by the

calibration (apart from linear interpolation between the

training thresholds), rather than being remapped to fit

the distributional assumptions of a parametric calibration

scheme.

2.2.5. Choice of training thresholds. There are several

factors affecting the choice of training thresholds for the

reliability calibration scheme. A low number of thresholds

reduces the memory and processing time required to

accumulate, store, and apply the training data. Well-

separated thresholds may also reduce the amount of

statistical noise introduced into the calibrated CDF. On

the other hand, the threshold spacing needs to be fine

enough to resolve genuine changes in behaviour. A reason-

able starting point for defining such thresholds might be

suitably separated quantiles of climatology. Since reliability

diagrams are expected to evolve smoothly as a function

of threshold, the particular number and placement of

thresholds should not be too critical to performance in

most cases, and this expectation appears to be supported

by limited experiments with, for instance, halving the

number of wind speed thresholds.

In the current implementation, the training thresholds

also define the control points from which the final CDF is

interpolated. The sharpest transition which this approach

can represent goes linearly from zero probability at one

threshold to unit probability at the next. If this threshold

spacing is wider than the true uncertainty, the calibrated

ensemble will be overspread, degrading the statistical

resolution of what would otherwise be very accurate

forecasts at short lead times. To avoid this problem, the

thresholds must be more finely spaced than the minimum

forecast error (as measured, for instance, using graphs of

root-mean-square (RMS) error as a function of lead time

and/or spread). It is worth noting that a more elaborate

implementation could separate the set of values on which

the final CDF is formed from the set of thresholds on

which the system is trained, interpolating the reliability

diagrams from the latter to the former. So long as the

training thresholds are spaced sufficiently finely to resolve

genuine nonlinear changes in the reliability diagrams, there

should be little or no loss of accuracy; indeed there may be

a reduction in statistical noise, and certainly a saving in

the memory and time required to accumulate the training

data. One might also conceivably extrapolate reliability

diagrams beyond the training data, as an alternative to the

current fallback to a climatological probability.

Table 1 shows the set of thresholds and value ranges

used for each variable in the tests presented below. These

were manually chosen based on the above considerations,

and seem to perform reasonably well. The precipitation

thresholds were chosen in powers of two (linear in the

logarithm of precipitation) to provide good resolution of

low precipitation amounts whilst reducing statistical noise

on higher amounts.

2.3. Training data

Although the focus of this paper is on the core calibration

method, this is intertwined with the question of what

training data should be used. Both of the methods presented

above attempt to distinguish behaviour in normal and more

extreme situations. This requires enough training data to

probe such situations; preliminary diagnostics reported in

section 4 of Flowerdew (2012) suggested about a year is

needed to stabilise the climatology calibration signal. This

is in contrast to simpler schemes such as running bias

correction, which by calibrating just one or two parameters

can make use of a shorter training period, but may apply

this training inappropriately in new situations.

The tests presented here use training taken from a year

of contemporary forecasts. Such data might reasonably be

obtained for most forecasting and observation systems, and

allows the construction of a calibrated multimodel ensem-

ble, which may provide the best overall forecast. It provides

a convenient data volume to work with, and should ensure

that the training is reasonably representative of the target

forecast configuration. Longer periods of homogeneous

training data can be provided using reforecasts (e.g.

Hagedorn et al., 2008; Hamill et al., 2008). However, these

are relatively expensive, and only the European Centre for

Medium Range Weather Forecasts (ECMWF) currently

provides reforecasts which continuously mimic their latest
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operational system. There is also no long homogenous

archive of the gridded observation dataset (described in

section 3.3 below) used in this study. It is worth noting that

a year of forecasts once per day contains four times more

cases than the Hagedorn et al. (2012) ECMWF reforecast

configuration (one forecast in each of 18 yr for each of the

5 weeks nearest the target date, giving 90 samples in total),

although the reforecast cases will be more independent.

Taking data from a single year in one block misses any

seasonal dependence in the calibration parameters, but

a method such as reliability calibration which differen-

tiates by event severity and makes more detailed use of the

underlying forecast may recover some of the seasonal

dependence through these proxies.

Another advantage of training on historic forecasts is

that it allows the full set of ensemble members to be used

as predictors. ECMWF reforecasts, by contrast, limit the

computational cost by running only four instead of the

usual 50 perturbed members. Calibration schemes based on

such data typically focus on summary parameters such as

mean and spread. The hope is that calibration based on

the full raw probabilities can make better use of the

detailed atmospheric dynamics and physics included within

each ensemble scenario, reducing the amount of work the

statistical scheme has to do. Ultimately, the correctness

or not of this idea would have to be demonstrated by

comparison to calibration schemes based on alternative

compromises, such as reforecasts. Early tests confirmed

that the performance of the reliability calibration method

is degraded when the training uses a subset of ensemble

members.

An operational calibration scheme needs to be both

scientifically beneficial and efficient to operate. In this

regard, it is worth noting that both the climatology and

reliability calibration schemes only require a single pass

through the training data. It is also possible to group their

training data in short blocks, which can be quickly added

together to keep the training current as old blocks are

dropped and new blocks are added. This is in contrast to

schemes such as NGR and logistic regression, which have

to iterate over the whole training period to optimise the

calibration parameters.

As described in the following section, the tests presented

below are based on forecasts made over a 2-yr period.

The following procedure is used to keep the calibration of

each forecast independent of the verification. The period is

divided into blocks: 3 months long for climatology calibra-

tion as discussed above, and 6 months long for reliability

calibration (to reduce computational cost since the block

length has no direct scientific impact in this case). Each

target date is calibrated using training data drawn from

the year of ‘preceding’ blocks, wrapping so that forecasts

early in the period involve training from the end of the

period, which should still be independent. The use of the

same training data for one block’s worth of forecasts is

simply a convenience to reduce the computational cost of

processing 2 yr of data. An operational implementation

might update the training data each day. For simple schemes

such as bias corrections with short training periods, the

training data needs to be as recent as possible. For the

reliability calibration scheme, which needs more training

data and uses the underlying dynamic forecast to apply it

in a case-specific way, the data cannot all be recent, but this

hopefully matters less.

3. Data sources

3.1. Single-model ensemble forecasts

Following Flowerdew (2012), the evaluation presented in

this paper focusses onmedium-range (15-d) global ensemble

forecasting systems. This covers many useful applications,

and allows a relatively large geographical area to be covered

with manageable data volumes and reasonable observa-

tion coverage. The decay from relatively skilful forecasts

at short range to little or no advantage over climatology at

15 d tests the performance of the calibration methods across

this full range of input quality. It would be interesting to test

the method on higher-resolution forecasts, since the under-

lying statistical logic of the calibration method is not tied to

any particular scale, but this is left for future work.

The forecast data were obtained from the THORPEX

Interactive Grand Global Ensemble (TIGGE; Bougeault

et al., 2010) archive, http://tigge.ecmwf.int/. This allows the

calibration to be tested on a range of models with different

characteristics and levels of skill, providing evidence of its

generality and robustness. As in Flowerdew (2012), three

forecast centres are considered: the ECMWF, Met Office

and United States National Centers for Environmental

Prediction (NCEP). These are the three forecasts which the

Met Office could most readily obtain in real-time for future

operational products. They are also amongst the best

performing models in the archive, helping to illustrate the

best performance which might be obtained, and making

sure that the calibration scheme is actually beneficial (or at

least not harmful) for such systems.

For simplicity, the results presented here consider only

perturbed forecast members, without the unperturbed con-

trol forecasts. This makes each ensemble a homogenous

unit that ought to produce reliable probabilities if all the

system assumptions were satisfied. Control forecasts do

provide extra information, with lower RMS error than

perturbed members, so an optimal forecasting system would

probably want to make use of them. However, this raises

further questions such as how to optimally weight the

control forecast, and whether this weight should vary with
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lead time. In any case, early experiments suggested that

the inclusion or exclusion of control members makes little

difference to the verification scores; they are after all only

a small fraction of the total member count.

The results presented in this paper cover forecasts made

over a 2-yr period from April 2010 to March 2012. This

was chosen as a period of relative stability in the system

configurations following upgrades taking the ECMWF

ensemble to a typical 32/63 km grid spacing for lead times

before/after T�10 d and the Met Office to a typical 60 km.

Two years was chosen to provide a reasonable sample

covering all seasons equally with independent training

and verification. To limit the data volume, only 00 UTC

forecasts have been considered, evaluated in successive 12 h

intervals from 0 to 15 d. For convenience, and to avoid

downloading the full global fields, data were interpolated

on the ECMWF computer system to a common 18 grid

over Europe. This matches the archived resolution of the

NCEP data, and is within a factor 2�3 of the ECMWF and

Met Office grid resolutions quoted above, noting that the

skilful resolution of numerical forecasts is typically several

times the grid spacing.

3.2. Multimodel ensemble forecast

In addition to the three models individually, the use of

TIGGE data provides the opportunity to test the calibra-

tion scheme applied to their combination in a multimodel

ensemble (Park et al., 2008; Johnson and Swinbank, 2009;

Fraley et al., 2010). Ensemble combination can provide

similar benefits to calibration, but relies on the diversity

of the source models rather than historic training data. It

increases the number of members, samples over structural

uncertainty and models that may do better or worse in

different situations, and creates the potential for cancella-

tion of systematic errors. There has been some debate in the

literature over whether multimodel ensembles or calibra-

tion of the best single-model ensemble provide the opti-

mum practical forecasting system (Park et al., 2008; Fraley

et al., 2010; Hagedorn et al., 2012; Hamill, 2012). One

might alternatively regard these techniques as complemen-

tary, and hope for extra benefit by applying both together.

In the context of the present paper, where the focus is on

testing the reliability calibration method, the multimodel

ensemble probes the performance of the calibration method

for input that involves more ensemble members, is poten-

tially more skilful, but is also less homogeneous than

the individual forecasting systems. We therefore focus on

calibration applied after combination, rather than the other

way round. This order has particular advantages for the

reliability calibration method. Firstly, it provides more

members both to establish the raw probability and to

project the calibrated CDF back on to. Secondly, it ensures

the calibration directly controls the statistical character-

istics of the final output, such as reliability, rather than

this being additionally dependent on a combination pro-

cess applied after calibration. The climatology calibration,

on the other hand, is applied separately to each forecast

model, since it only targets the forecast bias, and this might

be expected to vary between models.

When combining ensembles, one also has to decide

how to weight the members from different systems. For

the purposes of testing the calibration method, we adopt the

simple approach of weighting each individual forecast

equally. This matches the output of the reliability calibra-

tion method, where the quantiles chosen from rank histo-

grams should produce equally likely members. The main

simple alternative (without requiring data on past per-

formance) would be to weight each ensemble system

equally. In practice, early tests on precipitation (not shown)

produced very similar verification results from both ap-

proaches, with perhaps a slight preference for member-

based weighting. Johnson and Swinbank (2009) also found

little impact from more elaborate spatially varying weights

derived from recent forecast performance and similarity.

A detailed consideration of ensemble weighting is beyond

the scope of this paper. In any case, restricting the com-

bination to three relatively skilful systems should reduce the

importance of such issues.

3.3. Observations

All of the results shown in this paper take their training and

verification data from the Met Office European area post-

processing system (EuroPP). This successor to the Nimrod

system (Golding, 1998) produces high-resolution (5 km)

analyses for a range of variables, to support the generation

of very-short-range extrapolation-based ‘nowcasts’. They

represent the Met Office ‘best guess’ for each variable,

combining information from both observations and short-

range limited-area forecasts. For precipitation, the analyses

are dominated by radar data where it is available, with

quality control and correction procedures (including a

large-scale adjustment towards rain-gauge magnitudes)

described in Harrison et al. (2000). A blend of satellite-

derived precipitation and short-range forecasts are used for

regions not covered by radar observations. For tempera-

ture, dewpoint, wind speed and sea-level pressure, the

analyses use short-range forecasts with a physically based

downscaling to the 5 km orography, adjusted towards

surface observations where available.

As a source of ‘observations’, the EuroPP data has both

advantages and disadvantages. As a ‘best guess’ combining

both forecast and observational information, it should

be close to the truth and thus provide a good target for

calibration and verification. The involvement of model
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data does, however, compromise its independence, and

may create some spurious preference for Met Office

forecasts, particularly at short range. This issue is explored

further in section 4.1, and would be important for a

detailed evaluation of the relative performance of forecasts

from different centres, or the magnitude of the advantage

obtained by multimodel combination. However, it should

matter less for the main purpose of the present paper,

which is to evaluate the ability of a calibration method to

draw forecasts towards reasonably good ‘observations’.

The gridded nature of EuroPP is a distinct advantage

for the calibration of gridded ensemble forecasts, since it

provides observations for every forecast gridpoint within

the EuroPP domain. The calibration and verification use

data from the 1532 18 gridboxes which are completely

within the EuroPP domain. The model forecasts are

compared to the mean of all EuroPP pixels whose centre

lies within each gridbox, and rainfall is similarly integrated

from hourly rates to 12 h accumulations. This approach

should greatly reduce the error of representativeness (Liu

and Rabier, 2002), since the model predictions of gridbox-

average quantities are compared to a similar average of

EuroPP data. Wind speed observations are formed as

the vector magnitude of the gridbox-average wind compo-

nents, to match the way it is calculated from the model

forecasts. Whilst many of the techniques used in this paper

might be applied to the problem of mapping gridbox-

average predictions to individual stations, this is not con-

sidered here, and would likely result in lower predictive

skill.

The calibration and verification presented in this paper

assume the observations are perfect, so that the ensemble

is expected to cover the entire difference between forecast

and observations (compare Flowerdew and Bowler, 2011,

and Saetra et al., 2004). This simplifies the algorithms, and

avoids the tricky task of estimating observation errors.

The focus on medium-range forecasts, and the use of

gridbox averages to reduce the error of representativeness,

should both reduce the importance of observation error in

comparison to forecast error.

Whilst basic checks did not highlight any obvious

artefacts in the EuroPP data for most variables, there

were some precipitation fields containing ridiculously high

values, hitting the maximum value of the integer encod-

ing used by the underlying file format. These presumably

arise from radar artefacts which were not removed by the

automated quality control procedures. A crude filter was

implemented to ignore all fields containing this value, given

that slightly less extreme nearby data appeared suspect in

a few example cases. This filter removed 52 out of the 1462

12-h periods in the whole 2 yr of data. By the nature of

the scores, the filter has a rather limited impact on the

threshold-based statistics which are the focus of the results

presented below, but more impact on timeseries and maps

of RMS error (not shown).

4. Results

4.1. Raw forecasts and probability verification

technique

Whilst the focus of this paper is on the impact of calibration

schemes, Fig. 2 briefly illustrates the performance of the

raw forecasts for a selection of variables. Besides their

interest for users, these variables expose different statistical

characteristics and forecast deficiencies, which can affect

the impact of the calibration schemes.

In this paper, the Brier Skill Score (BSS) is used as the

main tool for measuring overall forecast performance.

This considers the full PDF predicted by the ensemble (as

opposed to, say, just the mean and spread), and allows

performance for different types of event to be distinguished

through the choice of threshold. Related tools such as the

reliability and Relative Operating Characteristics (ROC)

diagrams can be used to help understand the results. Details

of all these verification techniques can be found in Wilks

(2006). The overall BSS measures the proximity of the

forecast probabilities to the ideal of 1.0 when the event

occurs and 0.0when it does not. This perfect forecast scores a

BSS of 1.0, whilst a system no better than always forecasting

a probability equal to the climatological frequency of the

event scores 0.0. The plots show the BSS split into the two

components mentioned in the Introduction. The ‘resolution’

(solid lines in Fig. 2) measures the fundamental ability to

forecast different probabilities for situations where the event

is more or less likely, regardless of their numerical value. The

reliability penalty (dotted lines in Fig. 2) measures the

weighted mean square difference between the forecast

probabilities and the frequency with which the event occurs

in each case. This decomposition is useful for probing the

action of a calibration scheme, particularly one which aims

to eliminate unreliability without harming statistical resolu-

tion. The overall BSS is the resolution minus the reliability

penalty.

One could choose a set of fixed thresholds appropriate to

each variable and find the BSS for each of these. However,

this has a number of disadvantages. Since the thresholds

are chosen separately for each variable, they do not provide

a direct comparison of performance for ‘equivalent’ thresh-

olds of different variables. Many fixed thresholds will only

be ‘in doubt’ for particular locations or seasons, with the

threshold outside the range of climatology in all other

cases. This has two consequences. First, the model receives

credit for knowing the spatial or seasonal variation in

climatology (‘false skill’; Hamill and Juras, 2006). Second,

the score is actually determined by performance for a few

CALIBRATING ENSEMBLE RELIABILITY 9



locations at particular times of year, resulting in a high

level of noise.

To mitigate these problems, this paper presents results

for thresholds which are chosen indirectly, via quantiles

of a climatology which varies in both space and time.

The forecast now has to beat this climatology to receive

a positive skill score. The resulting lower scores help to

emphasise the differences between systems. The approach

tends to increase the magnitude of the reliability penalty

compared to fixed thresholds, which is helpful when

evaluating a scheme designed to eliminate unreliability.

Since a given quantile should be equally likely to be

exceeded at any location or time of year, the final score

makes equal use of all locations and seasons, which should

improve the signal-to-noise ratio. A separate climatology

is also used for each time of day (00 and 12 UTC). Since

the thresholds are effectively parameterised in terms of

their local rarity, one can meaningfully compare system

performance for the same quantile of different variables.

One additional advantage for this particular study is

that the continuously varying values of the climatological

thresholds will explore all possible relationships with the

fixed thresholds used for training the reliability calibration

scheme.

Ideally, one would choose the thresholds based on a

long-term climatology. However, this would require further

data to be obtained which matched the spatial and

temporal characteristics of the main observations. There

is no long-term archive of EuroPP data, and in any case

that system has not been designed for long-term stability.

There is also little point evaluating performance for

thresholds which are not reasonably well-sampled within

the 2-yr verification period. Instead, a simple approach is

used whereby the verification thresholds for a given month

are taken from the 5�5-gridpoint region centred on the

gridpoint of interest for the same month in the other year

of the overall 2-yr period. By contrast, Flowerdew (2012)

took the thresholds from the same month in the same year

as the verification. This had the advantage that each

quantile is exceeded exactly the specified number of times

for each location and month. However, it gives the

climatology an unfair advantage as a reference forecast,
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Fig. 2. The resolution (solid) and reliability (dotted) components of the Brier Skill Score (BSS) for the 90th percentile of the local

‘alternate month’ climatology as described in the text. Results are shown for the perturbed members of the raw ECMWF (red), Met Office

(green) and NCEP (blue) ensemble systems, and the simple aggregation of all these members (orange). The variables are: (a) 12 h-

accumulated precipitation, (b) two-metre temperature, (c) 10-metre wind speed and (d) pressure at mean sea level.
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since it knows more precisely than an independent clima-

tology exactly where the events will occur within the

month. This leads to some very large and unreasonable

reliability penalties for the outer quantiles of some vari-

ables. It is not clear whether or not the in-sample clima-

tology actually gives an incorrect order of preference

to the different forecasting systems, but in any case the

independence of the ‘alternate month’ approach simplifies

the interpretation of the reliability penalty.

Since the ‘alternate month’ thresholds are drawn from 25

nearby gridpoints over a single month, they do not provide

a particularly good estimate of the long-term climatology.

However, this is not essential: all that is needed is a

prediction independent of the verification period that takes

out much of the spatial and seasonal variation. The optimal

degree of averaging can be estimated as that which

minimises the apparent skill of the forecasts: averaging

over too large an area increases apparent skill because it

smoothes out some of the detectable climatological varia-

tions, whilst averaging over too small an area increases

apparent skill because noise starts to dominate signal in

the estimated climatology. The above configuration was

chosen as that which approximately minimises the apparent

skill scores for two-metre temperature at moderate quan-

tiles. Since the climatology involves some noise, a good

climatological forecast can still beat it, and so some false

skill remains, e.g. in resolution scores not asymptoting

to zero. There is also a tendency to underestimate outer

quantiles by the following mechanism. In most cases, a

given month will contain more extreme events in one year

than the other. The thresholds derived from the less

extreme year will let through a large number of events

from the more extreme year, overpopulating the outer

quantiles. The performance for more extreme events is

considered in section 4.4 using thresholds drawn from the

climatology of the whole ‘alternate year’, sacrificing

seasonal variation in order to get the observed event

frequency closer to the requested nominal quantile.

In the interests of brevity, Fig. 2 and most later plots

only show results for a single quantile. Results for other

quantiles are generally similar, with a gradual decline in

skill towards more extreme quantiles in most cases (see also

section 4.4 below). As expected, overall skill tends to

decline with lead time. This is driven by the fundamental

ability to distinguish events from non-events (resolution),

whereas reliability often improves with lead time as the

ensemble expands towards climatology. Results for tem-

perature and wind speed show a marked diurnal cycle, with

midnight harder to forecast than midday for high quantiles.

Performance for precipitation and sea-level pressure is less

dependent on the time of day.

Sea-level pressure is a far better forecast than any of the

other variables, with higher initial scores, and the decline

not starting to tail off until around T�10 d. Temperature

has the next highest initial scores, with a relatively slow

decline in skill. The skill for precipitation and wind speed

decreases more quickly, particularly for higher quantiles.

The precipitation results for ECMWF (and thus to a

lesser extent for the multimodel combination) show a dip in

resolution and a spike in reliability penalty for the 12 h

period just following the increase in grid spacing at

T�10 d. This may be largely caused by the way accumula-

tions across the grid change are handled within the

TIGGE archive, rather than indicating a problem with

the ECMWF forecast itself. However, it should be noted

that the ECMWF performance is also below-trend for the

second 12 h period following the transition, which is not

subject to these technical issues. As one might expect, some

results (such as ROC area for high precipitation amounts

and some quantiles of sea-level pressure climatology, not

shown) show a permanent drop in performance associated

with the increase in grid spacing.

As might be expected from their respective grid spacings,

ECMWF generally provides the best single-model forecast,

followed by the Met Office and NCEP. Against EuroPP,

the Met Office forecasts perform relatively well at short

lead times. This may partly reflect a successful short-range

focus for this system, but may also be unfairly enhanced

by the contribution of related Met Office models to the

EuroPP analyses themselves. Verification against Met

Office or ECMWF analyses or short-range forecasts (not

shown) results in a stronger preference for the correspond-

ing system, as expected. Verification against truly indepen-

dent observations would be needed to definitively establish

the relative value of the different systems, but this is not

the focus of the present paper. However, one robust result

is worth noting: the multimodel combination is almost

never worse than the best single model. Even against

ECMWF analyses, it provides some small advantages.

The true advantage against independent observations

would presumably be larger than this, perhaps closer to

the results shown here against EuroPP.

4.2. Reliability calibration

Figure 3 illustrates the performance of the reliability

calibration method, for the same variables and quantiles

as were shown in Fig. 2. The calibrated resolution/

reliability are shown in red/blue respectively, with the

corresponding raw results in orange/green for comparison.

Since colour is used to highlight the impact of calibration,

the different forecast sources are now denoted by linestyles

as indicated in the caption.

The calibration is generally very effective at its main

objective of eliminating unreliability. The overall benefit

in terms of skill thus depends on how reliable the raw
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forecasts were: the poorer systems will tend to improve

more than the better systems. However, the better systems

are generally still improved, or at least not harmed, and the

calibrated multimodel ensemble generally remains superior

to the best calibrated single-model results. Some improve-

ments in statistical resolution are also evident. This might

seem surprising, since an overall relabeling of probability

values cannot change the resolution component of the

BSS. When the precipitation results are regenerated using a

calibration which is forced to always average the training

over the whole domain, much of the resolution benefit is

indeed removed (not shown). This suggests that the original

resolution improvement results from the spatial variations

in the mapping from raw to calibrated probabilities, which

is improving the ability to distinguish cases in which the

threshold is more or less likely to be exceeded. In other

words, an improvement in local reliability is measured as an

improvement in overall resolution.

The one detrimental impact observed for the 1�99th
nominal percentiles of variables other than sea-level

pressure is some losses of the area under the ROC curve

(and, to a lesser extent, BSS resolution) at long lead times

for the outermost quantiles. ROC curves show the hit and

false alarm rates which would be achieved by acting at each

available probability threshold, providing an alternative

measure of statistical resolution (Wilks, 2006). The pro-

blem is illustrated in Fig. 4 for the 99th percentile of

precipitation, which shows a slight loss in ROC area for

the NCEP and Met Office ensembles around T�4�9 d
(bottom panel). As usual, the calibration is quite effective

at diagonalising the corresponding reliability diagrams

(top panel), bearing in mind the noise in the verification.

However, this requires reducing the forecast probabilities

for this rare event (green/blue lines). This reduces the

number of ensemble members above the threshold, elim-

inating some cases in which just one member exceeded the

threshold. This reduces the hit rate at the rightmost kink

of the ROC curve (middle panel), and one can imagine a

similar effect applying to the BSS resolution (less drama-

tically due to the weighting by frequency of occurrence

which is built into the BSS). Thus, it seems that small

losses of resolution such as these are an inevitable con-

1.0
(a) (b)

(d)(c)

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0 2

2

4 6

Lead time (days)

8 10 12

0 4 6
Lead time (days)

8 10 12

14

1420 4 6
Lead time (days)

8 10 12 14

0 2 4 6
Lead time (days)

8 10 12 14

precip > 90.0 pc Res, Rel 2m T > 90.0 pc Res, Rel

pmsl > 90.0 pc Res, Rel10m ws > 90.0 pc Res, Rel

Fig. 3. The resolution (orange/red) and reliability (green/blue) components of the BSS for the same events as Fig. 2, but showing results

before (orange/green) and after (red/blue) application of the reliability calibration scheme. Results are shown for the ECMWF (dotted),

Met Office (dashed) and NCEP (dot�dashed) ensemble systems, and the simple aggregation of all these members (solid). Panels (a)�(c) use
the standard configuration. The calibration for panel (d) aggregates the training data with fixed 20-point spatial padding and re-projects

onto four replicas of the original ensemble, with verification using 186 probability bins, as discussed in the text.

12 J. FLOWERDEW



sequence of the twin requirements of statistical reliability

and re-projection onto a finite number of equally weighted

ensemble members. One simple remedy, employed in a few

cases below, is to re-project the calibrated CDF onto not

one but several replicas of the original raw ensemble. This

provides more members which can thus represent more

quantiles of the calibrated CDF, including extra detail in

the tails. For the larger ensembles, the verification must

use a correspondingly large number of probability bins to

see the full benefit of this approach (this has negligible

impact other than adding noise when verifying raw

forecasts, compared to the 50 bins used for all other

results). Replicating the raw ensemble is not a perfect

solution, since the repeated patterns will introduce small

spurious long-range correlations into the implied covar-

iances. More independent extra members might be ob-

tained by forming a ‘lagged’ ensemble including earlier

cycles of each forecast system.

The results for sea-level pressure (Fig. 3d) are less

positive than for other variables. This variable is inherently

large scale, so that there are fewer systematic errors arising

from the limited spatial resolution of the medium-range

models. This is reflected in the high statistical resolution

and low reliability penalty of the raw forecasts, leaving

little prospect for improvement by calibration. The relia-

bility calibration is effective at removing what unreliability

there is. It also slightly improves the resolution at short

lead times. Two further steps have been taken to reduce the

slight detriments at longer lead times. Firstly, the calibra-

tion has been forced to use 208 of spatial padding

throughout, rather than the standard dynamic aggrega-

tion process. It seems that the 200 samples requirement

which works well for other variables is not sufficient for

the coherent features found in sea-level pressure, and that

more averaging is needed to keep the signal-to-noise ratio

sufficiently high. Secondly, the calibrated probabilities

have been re-projected onto four replicas of the original

ensembles, with 186 probability bins (twice the number

of members in the multimodel combination) being used

in the verification. This brings a small improvement to

NCEP resolution, and a larger improvement to ROC area

at higher quantiles (not shown). However, despite these

improvements, the calibration remains slightly detrimental

to the resolution of the better systems at long lead times.

It may simply not be worth attempting to calibrate this

variable. One of the attractive features of both calibration

methods presented here is that they preserve relationships

not only within the calibrated ensemble but also between

the calibrated and raw ensembles. Thus, one can restrict

calibration to just those variables for which it is beneficial,

whilst maintaining coherence with the uncalibrated vari-

ables. Indeed, one could apply different calibration meth-

ods to different variables, provided they all preserve spatial

structure through the member identity.

4.3. Climatology calibration

In this section, the reliability calibration results are com-

pared to the climatology calibration introduced in section
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Fig. 4. The impact of reliability calibration on the 99th

percentile of precipitation. Calibrated results are shown in red/

blue, with the corresponding raw results in orange/green. Line-

styles represent the different underlying forecast systems as in

Fig. 3. The panels show: (a) reliability (orange/red) and forecast

frequency (also known as sharpness, green/blue, using the loga-

rithmic scale to the right of the plot) as a function of the forecast

probability and (b) the relative operating characteristics (ROC)

curve, both covering the 12 h accumulation period starting at

T�6 d, and (c) the area under the ROC curve, as a function of lead

time. Black dotted straight lines show the ideal, ‘no skill’ and ‘no

resolution’ conditions.
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2.1. Figure 5 shows the impact of climatology calibration in

the same format as Fig. 3, with the raw results in orange/

green. As explained in section 2.1, this method uses a pre-

specified degree of spatial padding whose optimal value will

be a compromise between the signal-to-noise ratio and the

locality of the calibration. Flowerdew (2012) used two-point

padding (giving 5�5-gridpoint local regions) for calibrat-

ing precipitation. When applied to two-metre temperature,

this was beneficial for low and moderate quantiles at short

lead times, but generally inferior to the raw forecasts for

high quantiles and longer lead times (not shown). Experi-

ments with 3, 5, 10, 20-point and whole-domain padding

suggested that 20-point padding is approximately optimal

for this variable, producing results that are generally not

inferior to the raw forecasts, although not quite as effective

as two-point padding for low and moderate quantiles at

short lead times. Twenty-point padding was also better for

sea-level pressure and the 50th percentile of precipitation,

but two-point padding was superior for wind speed and the

higher quantiles of precipitation. In each case, Fig. 5 shows

the results from the most beneficial configuration tested.

With these optimisations, the climatology calibration is

slightly beneficial to reliability and resolution for precipita-

tion and temperature, with a larger benefit for wind

speed. However, the reliability penalty is not eliminated

as effectively as direct reliability calibration (Fig. 3), and

the resolution improvement is often smaller. For sea-level

pressure, climatology calibration is detrimental at long lead

times, and again worse than reliability calibration. In fact,

reliability calibration is almost uniformly superior or equal

to climatology calibration across the 1�99 percentile range

tested. This supports the contention that reliability calibra-

tion is solving a more general problem than climatology

calibration, improving the prediction of case-specific un-

certainty in addition to generalised bias.

The climatology calibration is most effective for wind

speed, where it significantly reduces the abnormally large

reliability penalty of the raw forecasts, as well as improving

statistical resolution. To probe the mechanism behind this

improvement, Fig. 6 shows the evolution with lead time of

the 95th percentile of the climatologies of EuroPP and the

three single-model systems. Like the climatology calibra-

tion, this diagnostic finds the 95th percentile in each 3-

month block for the 5�5 region centred on each gridpoint,

excluding data outside the observation domain. It then

takes the mean over the eight 3-month blocks, producing

0.0
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Fig. 5. As Fig. 3, but showing the impact of the climatology calibration scheme. As discussed in the text, training data are aggregated

with two-point spatial padding for panels (a) and (c), but 20-point padding for panels (b) and (d).
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a single result for each gridpoint. The plot shows the 10th,

50th and 90th percentiles of this spatial field.

Figure 6a shows that the raw forecasts are generally

biased high with respect to EuroPP, although this is not

always true for the most windy gridpoints (top lines). The

forecasts also disagree amongst themselves as to the

climatology, and their relative positions vary as a function

of quantile (not shown). These features are not just an

artefact of looking at wind speed � they also apply to the

gridbox averages of zonal or meridional wind.

The climatology calibration is very effective at homo-

genising the spatial average forecast climatologies about the

observations, as illustrated in Fig. 6b. Correcting these

deficiencies is presumably responsible for the relatively large

improvement in probabilistic performance shown in Fig. 5c.

The reliability calibration targets climatology less directly,

as the sum of individually reliable forecast PDFs. It is

nonetheless very effective at homogenising moderate quan-

tiles about the observations (not shown). Fig. 6c shows

an intermediate example. The calibrated forecasts behave

more like the EuroPP climatology, with similar diurnal

cycles, but there is some drift with lead time which is more

pronounced for outer quantiles and smaller ensembles (Met

Office and NCEP). As forecasts become more uncertain

18
(a)

(b)

10.0/50.0/90.0 pc mean over periods of local 95.0 pc (ms–1)

10.0/50.0/90.0 pc mean over periods of local 95.0 pc (ms–1)

10.0/50.0/90.0 pc mean over periods of local 95.0 pc (ms–1)

16

14

12

10

8

6

4

16

14

12

10

8

6

4

(c)
16

14

12

10

8

6

4

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

0 2 4 6 8
Lead time (days)

10 12 14

Fig. 6. The 10th (lower dotted lines), 50th (solid lines) and 90th (upper dotted lines) percentiles over space of the mean over 3-month

blocks of the 95th percentile of 5�5-gridpoint climatologies for wind speed, presented as a function of lead time for the ECMWF (red),

Met Office (green) and NCEP (blue) ensemble systems, and EuroPP (orange). Results are shown for: (a) the raw forecasts, (b) forecasts

after climatology calibration, and (c) after reliability calibration.
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with lead time, the ensemble has to expand towards the

overall climatology. Accurately representing this with reli-

able equally likely members placed at fixed quantiles of the

calibrated CDF requires a large ensemble, such as a multi-

model combination. In principle, more correct climatology

might be obtained by distributing each member randomly

within its assigned quantile range. However, such noise

might harm more important skill measures and spatial

relationships. Combining rather than discarding bins that

have too few samplesmay also help to improve the calibrated

climatologies. Nonetheless, even the smaller ensembles

achieved very low reliability penalties with reliability cali-

bration in Fig. 3c.

4.4. More extreme thresholds

Forecasting extreme weather events is a key responsibility

of operational centres such as theMet Office. Ensembles are

particularly suited to this task, since these events tend to be

inherently unlikely. However, their rarity also increases the

difficulty of obtaining sufficient data to calibrate and verify

forecasts of such events.

Figure 7 illustrates the performance of the reliability

calibration scheme for some rare events. Following the

discussion in section 4.1, these plots take the threshold

at each gridpoint from the 0.1 or 99.9th percentile of the

local 5�5 region for the whole ‘alternate year’ of the 2-yr

verification period. Although the observed frequencies (just

over 0.3% for temperature and 0.1% for precipitation and

wind speed) do not quite reach the nominal quantile values,

they still correspond to the outermost one or two events

per gridpoint in the 2-yr period. On the other hand, the

availability of one or two events at each of the 1532 veri-

fication gridpoints helps to keep some control over the

verification noise. Nonetheless, the verification for such

rare events must be regarded as less certain than the results

shown above for more frequent events.

Figure 7 includes some modifications which were found

to slightly improve the performance of the reliability

calibration. The precipitation calibration has been allowed

to gather training data from the whole domain (rather

than the usual 208 limit), which slightly improves the

BSS for the most extreme quantiles. As in section 4.2, the

temperature forecasts have been re-projected onto four
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Fig. 7. As Fig. 3, but considering more extreme thresholds taken from the local ‘alternate year’ climatology as described in the text.

Panels show the 99.9th percentile of: (a) precipitation, (b) temperature and (c) wind speed, and (d) the 0.1th percentile of temperature. As

discussed in the text, the precipitation calibration is allowed to use training data from the whole domain, whilst the temperature calibration

is re-projected onto four replicas of the original ensemble, with verification using 186 probability bins.
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replicas of the original ensemble, and verified with 186

probability bins. This gives a slight improvement in BSS

resolution, and larger improvements in ROC area, parti-

cularly for the smaller ensembles. The extra verification

bins lead to a slight increase in the apparent reliability

penalty for these rare events, but this is presumably just

verification noise, both from the appearance of the reli-

ability diagrams and the fact that the underlying calibrated

probabilities are the same in both cases.

Figure 7 shows that some of the raw forecasts have very

large reliability penalties, and the calibration is again very

effective at almost eliminating these. Statistical resolution is

also generally improved, particularly for high temperatures

and wind speed. However, there is some loss of resolution

for low temperature extremes, where there is also little

reliability penalty to correct beyond the shortest lead times.

4.5. Spatial averages

One of the aims of the calibration schemes considered in

this paper is to produce ensemble members that retain

appropriate spatial, temporal and inter-variable structure.

This should extend the benefits of calibration to derived

quantities such as regional averages or the output of

hydrological models which integrate rainfall in space and

time. Whereas authors such as Berrocal et al. (2008) aim

to model correlations statistically, the schemes considered in

this paper rely on the raw ensemble. No attempt is made to

calibrate towards observed correlations, but equally the raw

ensemble could provide useful case-specific correlations.

A simple test of this feature can be performed by

calibrating at the grid scale but verifying averages over a

larger scale (here the 3�3 region centred on each gridbox).

The error variance of this average, for example, is the

average of the 9�9 matrix representing the error covar-

iance between the individual gridpoints, incorporating both

their error variances and the correlations between them.

A similar verification technique is used by Berrocal et al.

(2008).

The results are shown in Fig. 8a. To simplify the

comparison, only results for the Met Office ensemble are

shown; results for other systems are similar. The thresholds

are derived from an ‘alternate month’ climatology as in

section 4.1, except that the input samples are now the 3�3

averages centred on each gridpoint. Raw performance at

3�3 scale (red) is uniformly better than for the original 18
grid (Fig. 2a), perhaps because it gets closer to the effective

resolution of the underlying models. Direct calibration at

3�3 scale (orange) produces a similar positive impact to

calibration at 18 scale (Fig. 3a).

The key question is whether the ensemble reconstruction

method allows calibration at the grid scale to produce

good 3�3 averages. These results are shown by the green

lines. On the whole, these achieve similar performance to

calibration at 3�3 scale, improving on the raw forecasts.

In particular, the reliability penalty is reduced by almost

the same extent as direct calibration at 3�3 scale. Indirect

calibration does produce poorer BSS resolution and ROC

area scores than direct calibration for the smaller ensembles

at longer lead times. However, this effect is weak or absent

for the larger ensembles (not shown), and indeed the

indirect approach sometimes produces superior resolution

at short lead times.

The blue lines show the performance of indirect relia-

bility calibration when the members are assigned randomly

to quantiles, rather than following the raw ensemble. This

amounts to neglecting the spatial relationships embodied

within the raw ensemble. It does not change the grid-scale
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Fig. 8. The performance of forecasts derived from the Met Office ensemble for the 90th percentile of the 3�3 average of precipitation

centred on each gridpoint. The panels show: (a) resolution (solid) and reliability (dotted) components of the BSS as a function of lead time,

and (b) reliability (solid) and forecast frequency (dotted) for the 12 h accumulation period starting at T�4 d. Results are shown for the raw

forecasts (red), direct reliability calibration of the 3�3 averages (orange), and the 3�3 averages implied by reliability calibration of 18 data
with the standard member assignment following the raw ensemble (green) and random member assignment (blue).
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probabilities, but at 3�3 scale it performs much worse

than even the raw forecasts, particularly for the reliability

of lower quantiles.

Figure 8b shows one of the reliability diagrams which

contribute to Fig. 8a. This clearly illustrates the positive

impact of both direct and indirect reliability calibration in

drawing the raw forecasts towards the ideal diagonal.

Random quantile assignment, whilst reliable at 18 scale,

produces a sub-unit slope for the 3�3 average. This is

consistent with the underspread which would be expected

from neglecting the covariance terms in the 3�3 variance,

which would in turn harm both reliability and resolution.

4.6. Derived variables

In addition to spatial and temporal structure, the ensemble

reconstruction step employed by the reliability calibra-

tion scheme should preserve the relationships between vari-

ables. This property is briefly tested in this section using

the physically motivated example of dewpoint depression

(temperature minus dewpoint temperature). Whereas dew-

point temperature essentially measures specific humidity,

dewpoint depression is more like relative humidity.

The results are shown in Fig. 9. The test uses the same

four configurations as the previous section, and again only

the Met Office ensemble is shown (the impact on other

forecast sources is qualitatively similar). The raw forecasts

for dewpoint depression (red) are much poorer than either

of the input variables (e.g. Fig. 2b). Direct reliability

calibration (orange) is effective at improving the resolution

and largely eliminating the reliability penalty, particularly

for low quantiles. Indirect calibration (green) via tempera-

ture and dewpoint improves on the raw forecasts for

most quantiles, but is harmful to the very lowest quantiles

(Fig. 9a), and quite a bit less effective than direct cali-

bration. The difficulty with low quantiles may be related to

the fact that these involve small differences between the

calibrated forecasts of temperature and dewpoint. Random

quantile assignment neglecting the inter-variable relation-

ships (blue) is generally poor, leading to reliability penalties

that rise with lead time, particularly for the outer quantiles.

However, it does seem beneficial for the 50th percentile

(Fig. 9b), where it achieves similar reliability to direct cali-

bration. This may indicate that the raw ensemble correla-

tions are too strong for this portion of the dewpoint

depression climatology.

5. Discussion

Although ensemble forecasting systems are based on

physical laws and the Monte Carlo principle, their finite

grid spacing and other approximations lead to systematic

errors in climatology and forecast probabilities which can

be improved by statistical post-processing. This paper has

presented a novel calibration framework, which directly

targets statistical reliability whilst making minimal assump-

tions about the underlying distributions. Instead, it tries to

make the greatest possible use of the original physically-

based forecasts, including their spatial, temporal and inter-

variable structure.

The calibration method has been applied to three leading

medium-range ensemble forecasting systems, and their

combination into a multimodel ensemble. The evaluation

considered a range of surface variables over a European

domain for a 2-yr period. Although explicit confidence

intervals have not been calculated, the consistency of

results as a function of lead time, threshold, variable,

verification score and in particular across the different

underlying forecasting systems suggests the conclusions are

trustworthy. Particular attention has been paid to the BSS

(b)(a)
1.0

2m T–Td > 1 pc Res, Rel 2m T–Td > 50 pc Res, Rel

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8

Lead time (days)
10 12 14 0 2 4 6 8

Lead time (days)
10 12 14

Fig. 9. The resolution (solid) and reliability (dotted) components of the BSS from the Met Office ensemble for the: (a) 1st and (b) 50th

percentiles of two-metre dewpoint depression. Results are shown for the raw forecasts (red), direct reliability calibration of dewpoint

depression (orange), and the dewpoint depression implied by reliability calibration of temperature and dewpoint temperature with the

standard member assignment following the raw ensemble (green) and random member assignment (blue).
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evaluated against climatological thresholds, and its decom-

position into reliability and resolution components. The

calibration largely eliminates the reliability penalty whilst

generally preserving or enhancing statistical resolution. In

most cases, this improvement seems to extend even to more

extreme thresholds. The multimodel combination, being

quite reliable to start with, is improved less, but remains

almost uniformly competitive with or superior to the best

single-model ensemble.

The reliability calibration was compared with a Local

Quantile-Quantile Transform, an established calibration

method which generalises bias correction. This ‘climatol-

ogy calibration’ is generally very effective at homogenising

the average forecast climatologies about the observations.

Reliability calibration indirectly achieves similar results for

moderate quantiles, but seems to require a large ensemble

to limit drifts in the outer quantiles of some variables.

Nevertheless, the probabilities remain statistically reliable

throughout and the overall BSS are superior to climatology

calibration.

Two main deficiencies were identified in the univariate

aspects of the reliability calibration. The requirement to re-

project onto a finite set of ensemble members can lead

to some losses of ROC area, and to a lesser extent BSS

resolution. This problem can be alleviated using several

replicas of the original ensemble for the re-projection step.

However, some loss of resolution remains for low tem-

perature extremes. Sea-level pressure is also very challen-

ging to calibrate, primarily because the raw forecasts are

so good. A lot of averaging seems to be required to ensure

the adjustment adds signal rather than noise. In practice,

it may be better simply not to calibrate such variables.

A test based on spatial averages of precipitation suggests

the ensemble reconstruction approach is effective at pre-

serving useful spatial structure from the raw ensemble.

A similar test deriving dewpoint depression from tempera-

ture and dewpoint showed more modest performance,

generally improving on the raw forecasts, but not as

much as direct calibration. Where products or downstream

systems such as hydrological models require particular

combinations of variables, it may be better to calibrate

these directly rather than rely on inter-variable relation-

ships. This should not be too great a burden, assuming the

set of relevant variables is discrete and fairly small. It is

much more important that the calibration preserves useful

spatial and temporal structure, since deficiencies in these

aspects cannot be so readily overcome by direct calibration.

Section 2.2 outlined various ways in which the reliability

calibration method might be improved, including the details

of spatial aggregation, the treatment of extremes, and the

interpolation/extrapolation of reliability diagrams between/

beyond the training thresholds. The key to obtaining reliable

results is that every calibrated probability is interpolated

from relevant observed event frequencies. In the initial

implementation presented here, the predictor was the raw

probability to exceed the same threshold, but this is not

essential. One could, for example, add additional predictors

such as the ensemble mean or the forecast probability for

another threshold. This might help to improve resolution

scores by indicating proximity to the target threshold,

particularly for ensembles which are underspread. However,

a balance would need to be struck with the statistical noise

implied by more finely divided training data. Where the raw

forecasts suffer from significant bias, statistical resolution

might also be improved by preceding the reliability calibra-

tion with a climatology calibration, so that the intermediate

members cross the observational threshold when the raw

forecasts cross its model-world equivalent. This approach

could be particularly beneficial for themultimodel combina-

tion, since it provides a way to correct model-specific biases

in addition to the overall mean bias.

In the Met Office, the reliability calibration framework is

being considered as a potential basis for future operational

post-processing of gridded ensemble data. This holds the

promise of a calibrated yet spatially and temporally con-

sistent basis for mapped products, site-specific calibration

and downstream systems such as hydrological models. In

the future, we hope to benchmark the reliability calibration

scheme against a wider variety of methods, and develop real-

time demonstration products suitable for evaluation by

operational forecasters.
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