110 research outputs found
The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase
Ultraviolet (UV), optical and near infrared (NIR) observations of the type
IIP supernova (SN) 2007od are presented, covering from the maximum light to the
late phase, allowing to investigate in detail different physical phenomena in
the expanding ejecta. These data turn this object into one of the most peculiar
IIP ever studied. The early light curve of SN 2007od is similar to that of a
bright IIPs with a short plateau, a bright peak (MV = -18 mag), but a very
faint optical light curve at late time. However, with the inclusion of mid
infrared (MIR) observations during the radioactive decay we have estimate a
M(56Ni) ~ 2\times10^-2 M\odot. Modeling the bolometric light curve, ejecta
expansion velocities and black-body temperature, we estimate a total ejected
mass was 5 - 7.5 M\odot with a kinetic energy of at least 0.5 \times 10^51 erg.
The early spectra reveal a boxy H{\alpha} profile and high velocities features
of the Balmer series that suggest interaction between the ejecta and a close
circum-stellar matter (CSM). SN 2007od may be, therefore, an intermediate case
between a Type IIn SN and a typical Type IIP SN. Also late spectra show a clear
evidence of CSM and the presence of dust formed inside the ejecta. The episodes
of mass loss short before explosion, the bright plateau, along with the
relatively small amount of 56Ni and the faint [O I] observed in the nebular
spectra are consistent with a super-asympthotic giant branch (super-AGB)
progenitor (M~9.7 - 11 M\odot).Comment: V2, some test added and three figures changed from the first version.
21 pages, 18 figures, accepted for publication in MNRAS on May 24, 201
Evidence of Asymmetry in SN 2007rt, a Type IIn Supernova
An optical photometric and spectroscopic analysis of the slowly-evolving Type
IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its
earliest spectrum, taken approximately 100 days after the explosion epoch,
indicates the presence of a dense circumstellar medium, with which the
supernova ejecta is interacting. This is supported by the slowly-evolving light
curve. A notable feature in the spectrum of SN 2007rt is the presence of a
broad He I 5875 line, not usually detected in Type IIn supernovae. This may
imply that the progenitor star has a high He/H ratio, having shed a significant
portion of its hydrogen shell via mass-loss. An intermediate resolution
spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of
which has a width of 128 km/s. This slow velocity suggests that the progenitor
of SN 2007rt recently underwent mass-loss with wind speeds comparable to the
lower limits of those detected in luminous blue variables. Asymmetries in the
line profiles of H and He at early phases bears some resemblance to
double-peaked features observed in a number of Ib/c spectra. These asymmetries
may be indicative of an asymmetric or bipolar outflow or alternatively dust
formation in the fast expanding ejecta. In addition, the late time spectrum, at
over 240 days post-explosion, shows clear evidence for the presence of newly
formed dust.Comment: Submitted to A&A on 4/2/2009. Accepted by A&A on 17/5/2009.15 pages
plus 3 pages of online materia
Loss of miR-204 expression is a key event in melanoma
Cutaneous melanoma (CM) is a malignancy with increasing occurrence. Its microRNA repertoire has been defined in a number studies, leading to candidates for biological and clinical relevance: miR-200a/b/c, miR-203, miR-205, miR-204, miR-211, miR-23b and miR-26a/b. Our work was aimed to validate the role of these candidate miRNAs in melanoma, using additional patients cohorts and in vitro cultures. miR-26a, miR-204 and miR-211 were more expressed in normal melanocytes, while miR-23b, miR-200b/c, miR-203 and miR-205 in epidermis and keratinocytes. None of the keratinocyte-related miRNAs was associated with any known mutation or with clinical covariates in melanoma.
On the other hand, the loss of miR-204 was enriched in melanomas with NRAS sole mutation (Fisher exact test, P = 0.001, Log Odds = 1.67), and less frequent than expected in those harbouring CDKN2A mutations (Fisher exact test, P = 0.001, Log Odds − 1.09). Additionally, miR-204 was associated with better prognosis in two independent melanoma cohorts and its exogenous expression led to growth impairment in melanoma cell lines. Thus, miR-204 represents a relevant mechanism in melanoma, with potential prognostic value and its loss seems to act in the CDKN2A pathway, in cooperation with NRAS
Evaluation of in vivo response of three biphasic scaffolds for osteochondral tissue regeneration in a sheep model
Osteochondral defects are a common problem in both human medicine and veterinary practice although with important limits concerning the cartilaginous tissue regeneration. Interest in the subchondral bone has grown, as it is now considered a key element in the osteochondral defect healing. The aim of this work was to generate and to evaluate the architecture of three cell-free scaffolds made of collagen, magnesium/hydroxyapatite and collagen hydroxyapatite/wollastonite to be implanted in a sheep animal model. Scaffolds were designed in a bilayer configuration and a novel "Honey" configuration, where columns of hydroxyapatite were inserted within the collagen matrix. The use of different types of scaffolds allowed us to identify the best scaffold in terms of integration and tissue regeneration. The animals included were divided into four groups: three were treated using different types of scaffold while one was left untreated and represented the control group. Evaluations were made at 3 months through CT analysis. The novel "Honey" configuration of the scaffold with hydroxyapatite seems to allow for a better reparative process, although we are still far from obtaining a complete restoration of the defect at this time point of follow-up
Supernova 2007bi as a pair-instability explosion
Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse
progressively heavier elements in their centres, up to inert iron. The core
then gravitationally collapses to a neutron star or a black hole, leading to an
explosion -- an iron-core-collapse supernova (SN). In contrast, extremely
massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores
which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at
relatively low densities. Conversion of energetic, pressure-supporting photons
into electron-positron pairs occurs prior to oxygen ignition, and leads to a
violent contraction that triggers a catastrophic nuclear explosion. Tremendous
energies (>~ 10^{52} erg) are released, completely unbinding the star in a
pair-instability SN (PISN), with no compact remnant. Transitional objects with
100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse
supernovae following violent mass ejections, perhaps due to short instances of
the pair instability, may have been identified. However, genuine PISNe, perhaps
common in the early Universe, have not been observed to date. Here, we present
our discovery of SN 2007bi, a luminous, slowly evolving supernova located
within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding
core mass to be likely ~100 M_{solar}, in which case theory unambiguously
predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were
synthesized, and that our observations are well fit by PISN models. A PISN
explosion in the local Universe indicates that nearby dwarf galaxies probably
host extremely massive stars, above the apparent Galactic limit, perhaps
resulting from star formation processes similar to those that created the first
stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009),
including all supplementary informatio
Caltech Core-Collapse Project (CCCP) observations of type IIn supernovae: typical properties and implications for their progenitor stars
Type IIn Supernovae (SNe IIn) are rare events, constituting only a few
percent of all core-collapse SNe, and the current sample of well observed SNe
IIn is small. Here, we study the four SNe IIn observed by the Caltech
Core-Collapse Project (CCCP). The CCCP SN sample is unbiased to the extent that
object selection was not influenced by target SN properties. Therefore, these
events are representative of the observed population of SNe IIn. We find that a
narrow P-Cygni profile in the hydrogen Balmer lines appears to be a ubiquitous
feature of SNe IIn. Our light curves show a relatively long rise time (>20
days) followed by a slow decline stage (0.01 to 0.15 mag/day), and a typical
V-band peak magnitude of M_V=-18.4 +/- 1.0 mag. We measure the progenitor star
wind velocities (600 - 1400 km/s) for the SNe in our sample and derive
pre-explosion mass loss rates (0.026 - 0.12 solar masses per year). We compile
similar data for SNe IIn from the literature, and discuss our results in the
context of this larger sample. Our results indicate that typical SNe IIn arise
from progenitor stars that undergo LBV-like mass-loss shortly before they
explode.Comment: ApJ, submitte
SN 2008iy: An Unusual Type IIn Supernova with an Enduring 400 Day Rise Time
We present spectroscopic and photometric observations of the Type IIn
supernova (SN) 2008iy. SN 2008iy showed an unprecedentedly long rise time of
~400 days, making it the first SN to take significantly longer than 100 days to
reach peak optical luminosity. The peak absolute magnitude of SN 2008iy was M_r
~ -19.1 mag, and the total radiated energy over the first ~700 days was ~2 x
10^50 erg. Spectroscopically, SN 2008iy is very similar to the Type IIn SN
1988Z at late times, and, like SN 1988Z, it is a luminous X-ray source (both
supernovae had an X-ray luminosity L_ X > 10^41 erg/s). The Halpha emission
profile of SN 2008iy shows a narrow P Cygni absorption component, implying a
pre-SN wind speed of ~100 km/s. We argue that the luminosity of SN 2008iy is
powered via the interaction of the SN ejecta with a dense, clumpy circumstellar
medium. The ~400 day rise time can be understood if the number density of
clumps increases with distance over a radius ~1.7 x 10^16 cm from the
progenitor. This scenario is possible if the progenitor experienced an episodic
phase of enhanced mass-loss < 1 century prior to explosion or the progenitor
wind speed increased during the decades before core collapse. We favour the
former scenario, which is reminiscent of the eruptive mass-loss episodes
observed for luminous blue variable (LBV) stars. The progenitor wind speed and
increased mass-loss rates serve as further evidence that at least some, and
perhaps all, Type IIn supernovae experience LBV-like eruptions shortly before
core collapse. We also discuss the host galaxy of SN 2008iy, a subluminous
dwarf galaxy, and offer a few reasons why the recent suggestion that unusual,
luminous supernovae preferentially occur in dwarf galaxies may be the result of
observational biases.Comment: 15 pages, 5 figures, MNRAS accepte
SN 2008S: an electron capture SN from a super-AGB progenitor?
We present comprehensive photometric and spectroscopic observations of the
faint transient SN 2008S discovered in NGC 6946. SN 2008S exhibited slow
photometric evolution and almost no spectral variability during the first nine
months, implying a high density CS medium. The light curve is similar in shape
to that of SN 1998S and SN 1979C, although significantly fainter at maximum
light. Our quasi-bolometric lightcurve extends to 300 days and shows a tail
phase decay rate consistent with that of ^{56}Co. We propose that this is
evidence for an explosion and formation of ^{56}Ni (0.0015 +/- 0.0004 M_Sun).
The large MIR flux detected shortly after explosion can be explained by a light
echo from pre-exisiting dust. The late NIR flux excess is plausibly due to a
combination of warm newly-formed ejecta dust together with shock-heated dust in
the CS environment. We reassess the progenitor object detected previously in
Spitzer archive images, supplementing this discussion with a model of the MIR
spectral energy distribution. This supports the idea of a dusty, optically
thick shell around SN 2008S with an inner radius of nearly 90AU and outer
radius of 450AU, and an inferred heating source of 3000 K and luminosity of L ~
10^{4.6} L_Sun. The combination of our monitoring data and the evidence from
the progenitor analysis leads us to support the scenario of a weak electron
capture supernova explosion in a super-AGB progenitor star (of initial mass 6-8
M_sun) embedded within a thick CS gaseous envelope. We suggest that all of main
properties of the electron capture SN phenomenon are observed in SN 2008S and
future observations may allow a definitive answer.Comment: accepted for publication in MNRAS (2009 May 7
UC.183, UC.110, and UC.84 Ultra-Conserved RNAs Are Mutually Exclusive with miR-221 and Are Engaged in the Cell Cycle Circuitry in Breast Cancer Cell Lines.
In the human genome, there are about 600 ultra-conserved regions (UCRs), long DNA sequences extremely conserved in vertebrates. We performed a large-scale study to quantify transcribed UCR (T-UCR) and miRNA levels in over 6000 cancer and normal tissue samples to find possible correlation between these kinds of regulatory molecules. Our analysis evidenced several non-coding RNAs showing negative co-regulation with miRNAs; among them, we focused on miR-221 to investigate any relationship with its pivotal role in the cell cycle. We have chosen breast cancer as model, using two cell lines with different phenotypes to carry out in vitro treatments with siRNAs against T-UCRs. Our results demonstrate that the expression of uc.183, uc.110, and uc.84 T-UCRs is mutually exclusive with miR-221 and is engaged in the regulation of CDKN1B expression. In addition, tests with a set of anticancer drugs, including BYL719, AZD5363, AZD8055, AZD7762, and XL765, revealed the modulation of specific T-UCRs without alteration of miR-221 levels
SN 2008S: an electron-capture SN from a super-AGB progenitor?
We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in the nearby galaxy NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a long photon diffusion time and a high-density circumstellar medium. Its bolometric luminosity (≃1041 erg s−1 at peak) is low with respect to most core-collapse supernovae but is comparable to the faintest Type II-P events. Our quasi-bolometric light curve extends to 300 d and shows a tail phase decay rate consistent with that of 56Co. We propose that this is evidence for an explosion and formation of 56Ni (0.0014 ± 0.0003 M⊙). Spectra of SN 2008S show intense emission lines of Hα, [Ca ii] doublet and Ca ii near-infrared (NIR) triplet, all without obvious P-Cygni absorption troughs. The large mid-infrared (MIR) flux detected shortly after explosion can be explained by a light echo from pre-existing dust. The late NIR flux excess is plausibly due to a combination of warm newly formed ejecta dust together with shock-heated dust in the circumstellar environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90 au and outer radius of 450 au, and an inferred heating source of 3000 K. The luminosity of the central star is L≃ 104.6 L⊙. All the nearby progenitor dust was likely evaporated in the explosion leaving only the much older dust lying further out in the circumstellar environment. The combination of our long-term multiwavelength monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron-capture supernova explosion in a super-asymptotic giant branch progenitor star (of initial mass 6-8 M⊙) embedded within a thick circumstellar gaseous envelope. We suggest that all of main properties of the electron-capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answe
- …