1,944 research outputs found

    Penetration of human skin by the cercariae of Schistosoma mansoni : an investigation of the effect of multiple cercarial applications

    Get PDF
    It has previously been postulated that L-arginine emitted by penetrating Schistosoma mansoni cercariae serves as an intraspecific signal guiding other cercariae to the penetration site. It was suggested that penetrating in groups offers a selective advantage. If this hypothesis is correct and group penetration at one site on the host offers an advantage, it would follow that at such a site, successive groups of cercariae would be able to penetrate skin in either greater numbers or at a faster rate. This prediction was tested by the use of an in vitro model of cercarial penetration based on the Franz cell and using human skin. It was demonstrated that there was no increase in the percentage of cercariae able to penetrate the skin with subsequent exposures. Consequently, it seems unlikely that the release of L-arginine by cercariae during penetration could have evolved as a specific orientation system based on a selective advantage offered by group penetration.Peer reviewe

    Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs

    Get PDF
    At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, OH, and H2_{2}O) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. The atomic and molecular FIR (60-190 μm\rm \mu m) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&

    Estimation of Physiological Tremor from Accelerometers for Real-Time Applications

    Get PDF
    Accurate filtering of physiological tremor is extremely important in robotics assisted surgical instruments and procedures. This paper focuses on developing single stage robust algorithms for accurate tremor filtering with accelerometers for real-time applications. Existing methods rely on estimating the tremor under the assumption that it has a single dominant frequency. Our time-frequency analysis on physiological tremor data revealed that tremor contains multiple dominant frequencies over the entire duration rather than a single dominant frequency. In this paper, the existing methods for tremor filtering are reviewed and two improved algorithms are presented. A comparative study is conducted on all the estimation methods with tremor data from microsurgeons and novice subjects under different conditions. Our results showed that the new improved algorithms performed better than the existing algorithms for tremor estimation. A procedure to separate the intended motion/drift from the tremor component is formulated

    Frictional state evolution during normal stress perturbations probed with ultrasonic waves

    Get PDF
    Fault normal stress changes dynamically during earthquake rupture; however, the impact of these changes on dynamic frictional strength is poorly understood. Here we report on a laboratory study to investigate the effect of normal stress perturbations on the friction of westerly granite surfaces sheared under normal stresses of 1-25 MPa. We measure changes in surface friction and elastic properties, using acoustic waves, for step changes in normal stress of 1–50% and shearing velocities of 1-100 μm/s. We demonstrate that transmitted elastic wave amplitude is a reliable proxy for the real contact area at the fault interface at steady state. For step increases in normal stress, wave amplitude increases immediately and then continues to increase during elastic shear loading to a peak value from which it decreases as fault slip rate increases. Friction changes in a similar fashion, showing an inelastic increase over a characteristic shear displacement that is independent of loading rate. Perturbations in normal stress during shear cause excursions in the frictional slip rate that must be accounted for in order to accurately predict the evolution of fault strength and elastic properties. Our work improves understanding of induced seismicity and triggered earthquakes with particular focus on simulating static triggering and stress transfer phenomena using rate-and-state frictional formulations in earthquake rupture models

    Day-case surgery for total hip and knee replacement: how safe and effective is it?

    Get PDF
    Multimodal protocols for pain control, blood loss management and thromboprophylaxis have been shown to benefit patients by being more effective and as safe (fewer iatrogenic complications) as conventional protocols. Proper patient selection and education, multimodal protocols and a well-defined clinical pathway are all key for successful day-case arthroplasty. By potentially being more effective, cheaper than and as safe as inpatient arthroplasty, day-case arthroplasty might be beneficial for patients and healthcare systems

    Density correlations in ultracold atomic Fermi gases

    Get PDF
    We investigate density fluctuations in a coherent ensemble of interacting fermionic atoms. Adapting the concept of full counting statistics, well-known from quantum optics and mesoscopic electron transport, we study second-order as well as higher-order correlators of density fluctuations. Using the mean-field BCS state to describe the whole interval between the BCS limit and the BEC limit, we obtain an exact expression for the cumulant-generating function of the density fluctuations of an atomic cloud. In the two-dimensional case, we obtain a closed analytical expression. Poissonian fluctuations of a molecular condensate on the BEC side are strongly suppressed on the BCS side. The size of the fluctuations in the BCS limit is a direct measure of the pairing potential. We also discuss the BEC-BCS crossover of the third cumulant and the temperature dependence of the second cumulant.Comment: 4 pages, 4 figures. To appear in Phys. Rev. A. New calculation of the bin statistics of a free Bose gas; updated and extended bibliograph

    Herschel PACS Observations and Modeling of Debris Disks in the Tucana-Horologium Association

    Full text link
    We present Herschel PACS photometry of seventeen B- to M-type stars in the 30 Myr-old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme "Gas in Protoplanetary Systems" (GASPS). Six of the seventeen targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 micron imaging.Comment: 15 pages, 7 figures, Accepted to Ap

    Evolution of elastic and mechanical properties during fault shear. The roles of clay content, fabric development, and porosity

    Get PDF
    Phyllosilicates weaken faults due to the formation of shear fabrics. Although the impacts of clay abundance and fabric on frictional strength, sliding stability, and porosity of faults are well studied, their influence on elastic properties is less known, though they are key factors for fault stiffness. We document the role that fabric and consolidation play in elastic properties and show that smectite content is the most important factor determining whether fabric or porosity controls the elastic response of faults. We conducted a suite of shear experiments on synthetic smectite-quartz fault gouges (10–100 wt% smectite) and sediment incoming to the Sumatra subduction zone. We monitored Vp, Vs, friction, porosity, shear and bulk moduli. We find that mechanical and elastic properties for gouges with abundant smectite are almost entirely controlled by fabric formation (decreasing mechanical and elastic properties with shear). Though fabrics control the elastic response of smectite-poor gouges over intermediate shear strains, porosity is the primary control throughout the majority of shearing. Elastic properties vary systematically with smectite content: High smectite gouges have values of Vp ~ 1,300–1,800 m/s, Vs ~ 900–1,100 m/s, K ~ 1–4 GPa, and G ~ 1–2 GPa, and low smectite gouges have values of Vp ~ 2,300–2,500 m/s, Vs ~ 1,200–1,300 m/s, K ~ 5–8 GPa, and G ~ 2.5–3 GPa. We find that, even in smectite-poor gouges, shear fabric also affects stiffness and elastic moduli, implying that while smectite abundance plays a clear role in controlling gouge properties, other fine-grained and platy clay minerals may produce similar behavior through their control on the development of fabrics and thin shear surfaces

    Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory

    Get PDF
    Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us to comprehend the architecture of extrasolar planetary systems. Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have provided a valuable dataset for the study of debris discs gas and dust composition. This paper is part of a series of papers devoted to the study of Herschel PACS observations of young stellar associations. Aims. This work aims at studying the properties of discs in the Beta Pictoris Moving Group (BPMG) through far-IR PACS observations of dust and gas. Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100 and 160 microns of 19 BPMG members, together with spectroscopic observations of four of them. Spectroscopic observations were centred at 63.18 microns and 157 microns, aiming to detect [OI] and [CII] emission. We incorporated the new far-IR observations in the SED of BPMG members and fitted modified blackbody models to better characterise the dust content. Results. We have detected far-IR excess emission toward nine BPMG members, including the first detection of an IR excess toward HD 29391.The star HD 172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding the short list of debris discs with a gas detection. No debris disc in BPMG is detected in both [OI] and [CII]. The discs show dust temperatures in the range 55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii from blackbody models in the range 3 to 82 AU. All the objects with a gas detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table
    corecore