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ABSTRACT The chromosomal alization of the human
and rat genes encoding the kalnate-preferring glutamate recep-
tor subunits KAl and KA2 (GRIK4 and GRIKS, respectively)
was determined by Southern analysis of rat x mouse and human
x mouse somatic cell hybrid panels and by fluorescence in situ
hybridization. The localization of the mouse genes (Grik4 and
Gri5) was established by interspecific backcross mapping.
GRIK4 and GRIKS are located on separate chromosomes (Chrs)
in all species. GRIK4mapped to human Chr 11q22.3, mouse Chr
9, and rat Chr 8. GRIKS mapped to human Chr 19q13.2, mouse
Chr 7, and rat Chr 1. The genes encoding the (R,S)-a-amino-
3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-pre-
ferring subunit GluR4, or GluRD (GRIA4), the neural cell
adhesion molecule (NCAM), the D2 dopamine receptor (DRD2),
and the Thy-i cell surface antigen (THYI) have all been previ-
ously mapped to the human Chr 11q22 region. The mapping of
the human GRIK4 and GRIKS genes confirms and extends the
relationship between human Chr 11 and mouse Chr 9 and also
human Chr 19 and mouse Chr 7. GRIK4 is the fifth gene shared
by human Chr 11 and rat Chr 8, whereas GRIKS is 1 out of the
12 genes that are located on both human Chr 19 and rat Chr 1.
Our data extend the conserved synteny established between
certain human, mouse, and rat Chrs.

Glutamate is the major excitatory neurotransmitter in the
mammalian central nervous system (CNS) (1). Its physiolog-
ical action is exerted through the activation of ligand-gated
ion channels and guanine nucleotide-binding protein (G-
protein)-coupled membrane receptors (1). Besides their cen-
tral role in excitatory synaptic transmission, glutamate re-
ceptors are also thought to be involved in long-term poten-
tiation, learning, Alzheimer disease, and epilepsy (1, 2).
Glutamate-gated ionic channels are broadly classified into
N-methyl-D-aspartate (NMDA) and non-NMDA types (1, 3).
cDNAs for subunits belonging to both classes of receptors
have been cloned and characterized in their molecular and
functional properties (3). The expression of the individual
subunits and of their splice variants has been analyzed in
different CNS regions (4, 5).
The cDNA sequences of non-NMDA receptor subunits

show a high degree of similarity with each other but derive
from distinct genes that are differentially expressed in the
mammalian CNS (3). Three related non-NMDA receptor
subunit gene families have been defined (3): the (R,S)-a-
amino-3-hydroxy-5-methylisoxazole-4-propionic acid

(AMPA)-preferring family (GluR1-4, or GluRA-D; GRIA
gene family) and the two kainate-preferring families
(GluR5-7 and KA1 and KA2; in the two GRIK gene
families). The kainate-preferring subunits KA1 and KA2
display 68% identity in their amino acid sequence and code
for proteins that do not form functional homomeric ionic
channels but bind kainate with affinities in the nanomolar
range (6, 7). Studies performed in transfected mammalian
cells (7), in oocytes (8), and in cultured CNS glial cells (9)
have indicated that KA1 and KA2 form functional hetero-
meric kainate-preferring ionic channels with the GluR5-7
subunit family but not with GluR1-4.
KA1 and KA2 display a strikingly different expression

pattern in the rat brain. KA1 mRNA expression is restricted
to the CA3 region of the hippocampus, whereas KA2 mRNA
can be detected in almost all regions of the brain (6, 7). This
differential distribution has been detected as early as embry-
onic day 14 (7), suggesting that different transcriptional factors
may regulate and segregate the expression of the genes en-
coding the KA1 and KA2 receptor subunits in the CNS.
Altered levels ofKA1 or KA2 expression, as well as synthesis
of mutated proteins, could have serious functional conse-
quences in several classes ofCNS cells and possibly be linked
to neurologic and/or psychiatric disorders. We have, there-
fore, analyzed the chromosomal localization of the genes
encoding KA1 and KA2 in human (GRIK4 and GRIKS),
mouse (Grik4 and GrikS), and rat (GRIK4 and GRIKS). We
report here that GRIK4 and GRIKS genes are localized on
different human chromosomes (Chrs), 11 and 19, respectively.
This localization extends the synteny conservation between
human Chr 11, mouse Chr9, and rat Chr8 (10-12) and between
human Chr 19, mouse Chr 7, and rat Chr 1 (11, 13).

MATERIALS AND METHODS
Interspecific Backcross Mapping. Interspecific backcross

progeny were generated by mating (C57BL/6J x Mus spre-
tus)Fl females and C57BL/6J males as described (14). A total
of 205 N2 mice were used to map the Grik4 and GrikS loci.
Southern blot analysis was performed as described (15). The
probe for Grik4 was a 415-bp Nco I/Dra I fragment of the rat
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cDNA, labeled with [a-32P]dCTP; washing was done to a final
stringency of0.8x standard saline citrate phosphate (SSCP)/
0.1% SDS at 650C. Fragments of 6.2, 3.8, and 0.5 kb were
detected in Taq I-digested C57BL/6J (B) DNA, and frag-
ments of 4.2, 3.8, 3.3, 2.4, and 0.5 kb were detected in Taq
I-digested M. spretus (S) DNA. The presence or absence of
the 4.2-kb M. spretus-specific fragment was followed in
backcross mice. The probe for GrikS was a 507-bp BamHI
fragment of the rat cDNA, which detected Sca I fragments of
15.0 kb (B) and 8.7 and 5.7 kb (S). The presence or absence
of the M. spretus-specific fragments, which cosegregated,
was followed in backcross mice.
A description of the probes and restriction fragment length

polymorphisms (RFLPs) for the loci linked to Grik4, including
the Etsl protooncogene (Etsl), thymus cell antigen 1 (Thyl),
and dopamine receptor 2 (Drd2), has been reported (16). A
description of the probes and RFLPs for the loci linked to
GrikS, including transforming growth factor (81 (Tfgbl), glu-
cose phosphate isomerase 1 (Gpil), and ras-related oncogene
(Rras), has been reported (17, 18). Recombination distances
were calculated as described (19). Gene order was determined
by minimizing the number ofrecombination events required to
explain the allele distribution patterns.

Cell Hybrids. Two panels of somatic cell hybrids were used
to localize the genes in human and rat (13, 20, 21). In addition,
a human x Chinese hamster cell hybrid (GM10449; line
5HL9-4) characterized by the presence of only human chro-
mosome 19 (22) was used.

Southern Blot Analysis and Hybridization Probes. Genomic
DNAs from hybrids and parental control cells were examined
by Southern blot analysis (13). Sequences encoding GRIK4
were identified by hybridization to a 413-bp Nco I/Dra I
fragment (nucleotides +100 to +513, relative to the ATG)
that was isolated from the rat KA1 cDNA (6). GRIK5
genomic sequences were identified by hybridization to a
507-bp BamHI fragment (nucleotides -58 to 449, relative to
the ATG) that was derived from the rat KA2 cDNA (7).
In Situ Hybridization. Human metaphase spreads were

obtained from phytohemagglutinin-stimulated peripheral
blood lymphocytes from a human donor. Chr preparations

were hybridized in situ with probes labeled with biotin by
nick-translation (23). The rat cDNA-derived probes used for
hybridization were aNco IlAva I fragment (2.6 kb) for GRIK4
and aXba I/Stu I fragment (3.0 kb) for GRIK5. Biotin-labeled
DNA was detected with fluorescein isothiocyanate (FITC)-
conjugated avidin. Chr identification was obtained by simul-
taneous 4',6-diamidino-2-phenylindole (DAPI) staining. Digi-
tal images were obtained using a Zeiss Axioplan epifluores-
cence microscope equipped with a cooled charge-coupled
device camera (Photometrics, Tucson, AZ). FITC and DAPI
fluorescence, detected using Pinkel no. 1 specific filter set
combinations (Chroma Technology, Brattleboro, VT), were
recorded separately as gray-scale images. Pseudocoloring and
merging of images were performed using GENEJOIN software
(T. Rand and D. C. Ward, Yale University).

RESULTS

Chr Assignment of the Rat GRIK4 and GRIKS Genes. We
determined the chromosomal localization of the rat GRlK4
and GRIKS genes by using rat x mouse hybrids that segregate
rat Chrs. The rat GRIK4 cDNA-derived probe detected three
rat genomicBamHI fragments (10.5, 6.7, and 2.9 kb) that were
easily distinguishable from three mouse fragments (data not
shown). The three rat fragments were detected in the three
clones that possess rat Chr 8 and only in these clones (Table
1). At least four discordant clones were counted for each ofthe
other Chrs (Table 1). The rat GRIK5 cDNA-derived probe
detected four rat-specific EcoRI restriction fragments. The
signal arising from two fragments (21 and 4.5 kb) was suffi-
ciently strong to be followed in the hybrid clones that possess
rat Chr 1 (data not shown). These fragments clearly cosegre-
gated with rat Chr 1 (Table 1). At least three discordant clones
were counted for each of the other Chrs (Table 1). It can be
concluded, therefore, that the rat GRIK4 and GRIK5 genes
reside on rat Chrs 8 and 1, respectively.
Chromosome A ment of the Human GRIK4 and GRIJK

Genes. The rat GRIK4 and GRIK5 cDNA-derived probes were
found to cross-hybridize with human sequences. This is con-
sistent with previous studies reporting a high degree of similar-

Table 1. Rat chromosome constitution of the rat x mouse hybrids and segregation of the rat GRIK genes
Rat
GRIK
genes* Rat chromosomet

Hybrid 4 5 X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LB20 - - + - (+) (+) - - - + - - - - + + - - + (+)+ + -
LB150-1 - - + - - + + - - + - + (+) + + + - - (+) (+) + + -
LB161 - - + - + + + + + + - + + (+) + + + + + + + (+)
LB210-I - - + -. . . . . . . . . .+ + - - - + - -
LB251 - + + + + + - (+) + + + + - - - + - + -
LB330 - - + - + + + - + - + + - - - - + - - -
LB360B + ND + - - + + + + + + + + + + + + + + + +
LB510-6 - - + + + + . . . . . . . + + + + + + + - -
LB630 - + +(-) + +(+) + + - + - + + + (+)+ + - + + (-)
LB780 - - + + + + + - + + + - + + - +
LB810 + - + + + + - + + + - + + + + + + + + - + (+)
LB860 - - + + + + - - + - + - + + + + + + + - ()
LB1040 - - + - + + (-) + + - - + + + - - + + - + - +
BS511 + - + + + (-) ++ + + - + - + + + - + -

GRIK4* 11 4 8 9 9 4 6 9 0 7 7 5 10 9 5 5 7 8 11 5 5
GRIKPt 10 0 8 10 8 3 4 8 3 4 7 6 8 8 5 6 8 9 9 4 6

ND, not determined.
*+ and - indicate the presence and absence of the rat gene, respectively.
t+ indicates that the rat chromosome is present in >55% of the metaphases; (+) indicates that the rat chromosome is present in 25-55% of the
metaphases; (-) indicates that the rat chromosome is present in <25% of the metaphases; - indicates that the rat chromosome is absent.
tIndependent discordant clones. Independent hybrid clones are derived from distinct fusion events. All hybrids presented in this table are
independent clones. When a chromosome was present in <25% of the metaphases [(-)], the hybrid in question was not taken into account
to establish the number of discordancies for that particular chromosome.
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Table 2. Human chromosome constitution of the human x rodent cell hybrids and segregation of the human GRIK genes
Human
GRIK
genes* Human chromosomes

Hybrid 4 5 X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Y
HAll +.-+ + + - + - - +.------- -+ + --
HA13 + - + + - + + + - + - + + - + - + + --
HA212 + + + - +.+ - + + -+ - -

HA221 + - + - - + + +-- + - . . . + --
HA232 ++ --+ + + --- + (++ + - -+ + -
HB25 ND - -+ + + + (-) + + (+()+ (+()+ + (+) + + + + +-
HB26 + + + -+ + - + + - -+() + + + + + + ()+ + +-
HB33 + - ---(+(+ )-+ -+ - -( ) + (+) - - +-
HB43 + + + + + + + + + + - + + + + + + + + + + +-
HB111 + - - + (+) ---(-)- + + + + - + -
HB142-2. . . . ...+ + + - - -
HB181 + + - + + - + + + - + + + + + + + + + + +-
NWO + ND- - - + -+ - + - - + + -+ + +.. .. +
JV211 + ND -(++ +(-+ + + + - + + + (+) + + + + -+-
HR4OC8 + +. . . +-(- + - + + + +(-+ + +(+)()
GM10449 ND +- --- - - - - - -+- - -+-

GRIK4§ 8 7 42 5 53 539 7 066 46 6 47 7 6 45 8
GRIKS1 56 4 511 864 76 57 64 6 4 563 25 54 6

ND, not determined.
*+ and -indicate the presence and absence of the human gene, respectively.
t+ indicates that the human chromosome is present in >55% of the metaphases; (+) indicates that the human chromosome is present in 25-55%
of the metaphases; (-) indicates that the human chromosome is present in <25% of the metaphases; - indicates that the human chromosome
is absent.
*HA232 lacks intact human chromosome 19, but contains genetic material derived from 19q (CEA, PSG], and LHB genes; see ref. 13).
§Independent discordant clones. Independent hybrid clones are clones derived from distinct fusion events. They are identified by unrelated
numbers (nonindependent clones are HAll and HA13, or HA212, HA221, and HA232, or HB25 and HB26). When a chromosome was present
in <25% of the metaphase [(-)], the hybrid in question was not taken into account to establish the number of discordancies for that particular
chromosome.

ity between rat and human gltmtionotropic receptors in
their coding sequences (24). Using human x rodent cell hybrids
(Table 2), we then determined the chromosomal localization of
the human GRIK4 and GRIKS genes. When hybridized with the
GRIK4 probe, a HindEI digest of human genomic DNA gen-
erated two restriction fragments at 23.0 and 5.0kb, respectively
(data not shown). These could be distinguished from the ho-
mologous rodent fragments and were found to cosegregate with
each other and with human Chr 11 (Table 2). Several discordant
clones were counted forall the other Cbrs (Table 2). The GRIK4
gene thus resides on human Cbr 11.
The GRIKS cDNA-derived probe hybridized to a 7.2-kb

BamHI human restriction fradgment, which could be distin-
guished from the rodent homologues (data not shown) and
was found to segregate with human Chr 19 (Table 2). The
GRIKS gene thus resides on human Chr 19. The hybrid
HA232, which lacks intact human Cbr 19 but possesses

material from 19q (13), was positive for the human GRIKS
gene, indicating that this gene resides on 19q.

SukhomosmalLocailzaton of the Human GRIK4 and
GRIKS Genes by Fluorescence in Situ Hybridization (F-ISH). To
define the subregional localization ofGRIK4 and GRIKS genes
in human Cbrs, FISH experiments were pefre. The
results obtained confirmed the mapping ofGRIK4 and GRIKS
on human Chrs 11 and 19 and allowed the regional localization
of GRIK4 to band 11q23 and GRIKS to 19q13.2 (Fig. 1).
Chr Asinet of Grik and GrikS Genes In the Mouse. The

murine chromosomal locations of the Grik4 and Grilc5 genes
were determined by interspecific backcross analysis using
progeny derived from matings of [(C57BL/6J x M. spre-
tus)F, x C57BL/6.T] mice. This interspecific backcross map-
ping panel has been typed for over 1600 loci that are well
distributed among al the autosomes as well as the X chro-
mosome (14). C57BL/6J and M. spretus DNAs were ana-

FiG. 1. FISH of pKAI and pKA2
probes to metaphase spreads of human
chromosomes counterstained with
DAPI. KA1, GRIK4 gene; KA2, GRIKS
gene. Hybridization sigas are shownin
yellow (arrows). Double exposures of
the same fields are shown, which allow
simultaneous visuaiainof the fluo-
rescent hybridization sigas and the
chromosomes. The DAPN counterstain
was pseudocolored in red to provide
greater contrast with the hybridization
signals. Paired fluorescence spots de-
rived fr-om the diploid are observed on
chromosome 11q23 (Left) and 19q13.2
(Right) for GRIK4 and GRIKS probes,
respectively.
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FIG. 2. Chromosomal locations of Grik4 and
Grik5 in the mouse genome. The loci were
mapped by interspecific backcross analysis. The
segregation patterns of these loci and flanking
genes in backcross animals that were typed for all
loci are shown above the chromosome maps. For
individual pairs of loci, more animals were typed
(see text). Each column represents the chromo-
some identified in the backcross progeny that was
inherited from the (C57BL/6J x M. spretus)Fj
parent. The black boxes represent the presence of
a C57BL/6J allele, and white boxes represent the
presence of a M. spretus allele. The number of
offspring inheriting each type of chromosome is
listed at the bottom of each column. Partial chro-
mosome linkage maps showing the location of
Grik4 and GrikS in relation to linked genes are
shown. Recombination distances between loci in
centimorgans are shown to the left of the chro-
mosome, and the positions of loci in human chro-
mosomes, where known, are shown to the right.
References for the map positions of loci mapped
in human chromosomes can be obtained from the
Genome Data Base, a computerized data base of
human linkage information maintained by The
William H. Welch Medical Library of The Johns
Hopkins University (Baltimore).

lyzed by Southern blot hybridization for informative RFLPs.
A 4.2-kb Taq I M. spretus-specific RFLP was used to follow
the segregation of the Grik4 locus in backcross mice. The
mapping results indicated that Grik4 is located in the central
region of mouse Chr 9 linked to Etsl, Thy), and Drd2.
Although 150 mice were analyzed for every marker and are
shown in the segregation analysis (Fig. 2), up to 162 mice
were typed for some pairs of markers. Each locus was
analyzed in pairwise combinations for recombination fre-
quencies using the additional data. The ratios of the total
number of mice exhibiting recombinant Chrs to the total
number of mice analyzed for each pair of loci and the most
likely gene order are centromere-Etsl (13/155)-Grik4 (3/
160)-Thyl (2/162)-Drd2. The recombination frequencies [ex-
pressed as genetic distances (in centimorgans) ± SE] are Etsl
(8.4 ± 2.2)-Grik4 (1.9 ± 1.1)-Thyl (1.2 ± 0.9)-Drd2.
The Grik5 locus was defined by 8.7- and 5.7-kb Sca I M.

spretus-specific RFLPs. In this case, 157 mice were analyzed
for every marker and are shown in the segregation analysis
(Fig. 2), and up to 180 mice were typed for some pairs of
markers. The results indicate that Grik5 is located in the
proximal region ofmouse Chr 7. Also in this case, each locus
was analyzed in pairwise combinations for recombination
frequencies using the additional data. The ratios of the total
number of mice exhibiting recombinant Chrs to the total
number of mice analyzed for each pair of loci and the most
likely gene order are centromere-Tgfbl (0/172)-GrikS (9/
180)-Gpil (10/175)-Rras. The recombination frequencies
[expressed as genetic distances (in centimorgans ± SE] are
[Tgfbl, Grik5] (5.0 ± 1.6)-Gpil (5.7 ± 1.8)-Rras. No recom-
binants were detected between Tgfbl and GrikS in 172
animals typed in common, suggesting that the two loci are
within 1.7 centimorgans ofeach other (upper 95% confidence
level).

DISCUSSION
Native non-NMDA glutamate receptors consist of distinct
homo- or heterooligomeric combinations of AMPA- or kain-
ate-preferring subunits. The subunit composition confers
different biophysical properties to the resulting membrane
channels (3). The expression of functional non-NMDA ionic
channels in the brain requires coordinated transcription of
genes encoding AMPA- or kainate-preferring subunits at
critical times during development. A tandem arrangement of

members of the AMPA or the kainate gene family in a single
chromosomal locus could, therefore, be necessary to regulate
their coordinate expression, as previously hypothesized for
some muscle (25) and neuronal (26) acetylcholine receptor
genes and for two -aminobutyric acid A receptors (27).

In the present study, we mapped the two genes encoding
the kainate-preferring subunits KA1 and KA2 to determine (i)
if they are localized in a single locus and/or (ii) if they are
contiguous to other glutamate receptor subunit genes. We
found that GRIK4 and GRIKS map on two separate Chrs in
mouse, human, and rat and that they are not colocalized with
any of the genes encoding other kainate-preferring subunits.
The subunits KA1 and KA2 do not assemble to form func-
tional homomeric channels, but they are hypothesized to
form heterooligomeric ionic channels with the GluR5-7 fam-
ily (5, 7). Our chromosomal localization of GRIK4 and
GRIK5 suggests, therefore, that their coordinated expression
in the CNS with the genes encoding the subunits GluR5-7
(GRIKI-3) does not require linkage on a particular Chr.
The chromosomal localization of all the AMPA-preferring

(24) and some of the kainate-preferring (28-30) subunit genes
has been reported in mouse and human, showing that all
members ofboth glutamate receptor gene families are located
on different Chrs. In our analysis, the chromosomal local-
ization of GRIKS on 19q13.2 does not correspond to any of
the previously mapped GluR genes, whereas GRlK4 is co-
localized with the AMPA-preferring subunit GRIA4 gene in
the 11q22-23 region (24). The colocalization ofthe GRIK4 and
GRIA4 genes on the same region of Chr 11 does not appear
to be linked to a requirement for coordinated expression of
these two subunits in the CNS. Kainate- and AMPA-
preferring subunits do not combine with each other to form
native receptor channels (8, 31), and in situ hybridization
analysis of KA1 and GluR4 expression in rat brain showed
that the distribution pattern of their mRNAs is markedly
different (6, 32).
From a viewpoint of comparative mapping between spe-

cies, our data extend the conserved synteny previously
established between certain human, mouse, and rat Chrs.
While most human homologues of rat Chr 8 genes are located
on human Chr 3, GRIK4 is the fifth gene shared by human Chr
11 and rat Chr 8. The other genes previously mapped on these
Chrs are APOC3, ES6, NCAM, and THY) (10-12). The
localization of GRIKS extends the synteny conservation

Etsl

Grik4

Thy)

Dra2

Ets) 1 q23.3

5.0
8.4

1.9
1.2

Grik4
Thy)
Drd2

1 Iq22.3
1 lq22.3-q23
1 lq22-q23

5.7
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between rat Chr 1 and human Chr 19 (11, 13). It is remarkable
that, with one exception (C3), all localized rat genes homol-
ogous to human Chr 19 genes (12 genes, including GRIKS) are
located on Chr 1(33). Finally, the central region ofmouse Chr
9 and the proximal region ofChr 7 display conserved synteny
with human Chr llq and 19q, respectively. The placement of
GRIK4 on mouse Chr 9 and GRIKS on Chr 7 confirms and
extends the relationship between these pairs of mouse and
human Chrs.
GRIK4 and GRIKS are not located near chromosomal

regions associated with any human neurogenetic disorders
mapped so far. Several genes highly expressed in the CNS
have been previously mapped in the q22-23 region of human
Chr 11, where GRIK4 is localized. These include the DRD2
and the NCAM genes encoding the dopamine receptor sub-
type D2 and the cell surface glycoprotein N-CAM, which is
thought to play an important role during neural development
(34). The THY) gene, encoding the cell surface antigen
Thy-1, which is shared by neurons and astrocytes in the CNS
(35), was also mapped in the same chromosomal region (36).
The q22-23 region ofChr 11, as well as regions ofhuman Chrs
3, 6, 15, and 19, are homologous to mouse Chr 9 (37). The
gene Eli, the major gene responsible for an epileptic mouse
phenotype, was previously localized by linkage analysis on
mouse Chr 9 (38). The El mouse is considered a genetic model
for human temporal lobe epilepsies and complex partial
seizures (39); therefore, an altered Grik4 gene appeared to be
a good candidate for this phenotype. In fact, the mRNA for
the subunit KA1 is prominently expressed in the CA3 region
of the hippocampus, an area known to be responsible for the
precipitation and pacing of epileptiform activity in a variety
of animal seizure models (2). CA3 hippocampal neurons are
also the cell population most vulnerable to kainate-induced
neurotoxicity (2). A recent study has, however, indicated that
a partial duplication in the ceruloplasmin gene, localized in
mouse Chr 9 and human Chr 3q, is associated with the
epileptic phenotype in the El mouse (40). These findings,
however, do not completely rule out the possibility that,
because of its highly restricted expression in the brain,
mutations in GRIK4 may be linked to other forms ofepilepsy.
Finally, the localization of GrikS on mouse Chr 7 places this
gene in the vicinity of several mutations, one of which (nv,
Nijmegen waltzer; ref. 41) affects the neurological behavior
of mice. Our chromosomal localization analysis of GRIK4
and GRIKS in three different species will provide tools for
future linkage studies of the KA1 and KA2 kainate receptors
in various human diseases or neuropathologic states.
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