2,032 research outputs found
Self-Pulsating Semiconductor Lasers: Theory and Experiment
We report detailed measurements of the pump-current dependency of the
self-pulsating frequency of semiconductor CD lasers. A distinct kink in this
dependence is found and explained using rate-equation model. The kink denotes a
transition between a region where the self-pulsations are weakly sustained
relaxation oscillations and a region where Q-switching takes place. Simulations
show that spontaneous emission noise plays a crucial role for the cross-over.Comment: Revtex, 16 pages, 7 figure
A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for Ubiquitin Conjugates in Targeting Rad23 to the Proteasome
E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin–proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo
Simulating ice core 10Be on the glacial–interglacial timescale
10Be ice core measurements are an important tool for paleoclimate research, e.g., allowing for the reconstruction of past solar activity or changes in the geomagnetic dipole field. However, especially on multi-millennial timescales, the share of production and climate-induced variations of respective 10Be ice core records is still up for debate. Here we present the first quantitative climatological model of the 10Be ice concentration up to the glacial–interglacial timescale. The model approach is composed of (i) a coarse resolution global atmospheric transport model and (ii) a local 10Be air–firn transfer model. Extensive global-scale observational data of short-lived radionuclides as well as new polar 10Be snow-pit measurements are used for model calibration and validation. Being specifically configured for 10Be in polar ice, this tool thus allows for a straightforward investigation of production- and non-production-related modulation of this nuclide. We find that the polar 10Be ice concentration does not immediately record the globally mixed cosmogenic production signal. Using geomagnetic modulation and revised Greenland snow accumulation rate changes as model input, we simulate the observed Greenland Summit (GRIP and GISP2) 10Be ice core records over the last 75 kyr (on the GICC05modelext timescale). We show that our basic model is capable of reproducing the largest portion of the observed 10Be changes. However, model–measurement differences exhibit multi-millennial trends (differences up to 87% in case of normalized to the Holocene records) which call for closer investigation. Focusing on the (12–37) b2k (before the year AD 2000) period, mean model–measurement differences of 30% cannot be attributed to production changes. However, unconsidered climate-induced changes could likely explain the model–measurement mismatch. In fact, the 10Be ice concentration is very sensitive to snow accumulation changes. Here the reconstructed Greenland Summit (GRIP) snow accumulation rate record would require revision of +28% to solely account for the (12–37) b2k model–measurement differences
Recommended from our members
Splanchnic metabolism of nutrients and hormones in steers fed alfalfa under conditions of increased absorption of ammonia and L-arginine supply across the portal-drained viscera
Effects of increased ammonia and/or arginine
absorption on net splanchnic (portal-drained viscera
[PDV] plus liver) metabolism of nonnitrogenous
nutrients and hormones in cattle were examined. Six
Hereford × Angus steers (501 ± 1 kg BW) prepared with
vascular catheters for measurements of net flux across
the splanchnic bed were fed a 75% alfalfa:25% (as-fed
basis) corn and soybean meal diet (0.523 MJ of ME/[kg
BW0.75.d]) every 2 h without (27.0 g of N/kg of DM) and
with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a
split-plot design. Net flux measurements were made
immediately before and after a 72-h mesenteric vein
infusion of L-arginine (15 mmol/h). There were no treatment
effects onPDVor hepaticO2 consumption. Dietary
urea had no effect on splanchnic metabolism of glucose
or L-lactate, but arginine infusion decreased net hepatic
removal of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine
infusion (P < 0.07), and both dietary urea (P <
0.09) and arginine infusion (P < 0.05) increased net
hepatic removal of n-butyrate. Dietary urea also increased
total splanchnic acetate output (P < 0.06),
tended to increase arterial glucagon concentration (P
< 0.11), and decreased arterial ST concentration (P <
0.03). Arginine infusion increased arterial concentration
(P < 0.07) and net PDV release (P < 0.10) and
tended to increase hepatic removal (P < 0.11) of insulin,
as well as arterial concentration (P < 0.01) and total
splanchnic output (P < 0.01) of glucagon. Despite
changes in splanchnic N metabolism, increased ammonia
and arginine absorption had little measurable effect
on splanchnic metabolism of glucose and other nonnitrogenous
components of splanchnic energy metabolism
Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany
The impact of wood combustion on ambient aerosols was investigated in
Augsburg, Germany during a winter measurement campaign of a six-week period.
Special attention was paid to the high time resolution observations of wood
combustion with different mass spectrometric methods. Here we present and
compare the results from an Aerodyne aerosol mass spectrometer (AMS) and gas
chromatographic – mass spectrometric (GC-MS) analysed PM<sub>1</sub> filters on an
hourly basis. This includes source apportionment of the AMS derived organic
matter (OM) using positive matrix factorisation (PMF) and analysis of
levoglucosan as wood combustion marker, respectively.
<br><br>
During the measurement period nitrate and OM mass are the main contributors
to the defined submicron particle mass of AMS and Aethalometer with 28%
and 35%, respectively. Wood combustion organic aerosol (WCOA) contributes
to OM with 23% on average and 27% in the evening and night time.
Conclusively, wood combustion has a strong influence on the organic matter
and overall aerosol composition. Levoglucosan accounts for 14% of WCOA
mass with a higher percentage in comparison to other studies. The ratio
between the mass of levoglucosan and organic carbon amounts to 0.06.
<br><br>
This study is unique in that it provides a one-hour time resolution
comparison between the wood combustion results of the AMS and the GC-MS
analysed filter method at a PM<sub>1</sub> particle size range. The comparison of
the concentration variation with time of the PMF WCOA factor, levoglucosan
estimated by the AMS data and the levoglucosan measured by GC-MS is highly
correlated (<i>R</i><sup>2</sup> = 0.84), and a detailed discussion on the contributors
to the wood combustion marker ion at mass-to-charge ratio 60 is given. At
the end, both estimations, the WCOA factor and the levoglucosan
concentration estimated by AMS data, allow to observe the variation with
time of wood combustion emissions (gradient correlation with GC-MS
levoglucosan of <i>R</i><sup>2</sup> = 0.84). In the case of WCOA, it provides the
estimated magnitude of wood combustion emission. Quantitative estimation of
the levoglucosan concentration from the AMS data is problematic due to its
overestimation in comparison to the levoglucosan measured by the GC-MS
Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions
The internally electrodynamic (IED) particle model was derived based on
overall experimental observations, with the IED process itself being built
directly on three experimental facts, a) electric charges present with all
material particles, b) an accelerated charge generates electromagnetic waves
according to Maxwell's equations and Planck energy equation and c) source
motion produces Doppler effect. A set of well-known basic particle equations
and properties become predictable based on first principles solutions for the
IED process; several key solutions achieved are outlined, including the de
Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass,
Einstein mass-energy relation, Newton's law of gravity, single particle self
interference, and electromagnetic radiation and absorption; these equations and
properties have long been broadly experimentally validated or demonstrated. A
specific solution also predicts the Doebner-Goldin equation which emerges to
represent a form of long-sought quantum wave equation including gravity. A
critical review of the key experiments is given which suggests that the IED
process underlies the basic particle equations and properties not just
sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
A finite model of two-dimensional ideal hydrodynamics
A finite-dimensional su() Lie algebra equation is discussed that in the
infinite limit (giving the area preserving diffeomorphism group) tends to
the two-dimensional, inviscid vorticity equation on the torus. The equation is
numerically integrated, for various values of , and the time evolution of an
(interpolated) stream function is compared with that obtained from a simple
mode truncation of the continuum equation. The time averaged vorticity moments
and correlation functions are compared with canonical ensemble averages.Comment: (25 p., 7 figures, not included. MUTP/92/1
Search for the rare decay
A search for the decay is performed, based on a data sample of 1.0 fb of collisions at collected by the LHCb experiment at the Large Hadron Collider. The observed number of candidates is consistent with the background-only hypothesis, yielding an upper limit of at 95 (90)% confidence level. This limit is a factor of thirty below the previous measurement
- …
