34 research outputs found

    Bacterial behavior on coated porous titanium substrates for biomedical applications

    Get PDF
    In this work, bacterial behavior on dense and porous titanium substrates is discussed. Porous titanium was fabricated by a space holder technique using 50 vol , NH4HCO3 with particle sizes between 250 and 355 amp; 956;m . These substrates were coated by sulfonated PEEK termed SPEEK . Characterization of the porous substrate was carried out using the Archimedes Method, Image Analysis, and three dimensional X ray Micro Computed Tomography including total and interconnected porosity, equivalent diameter, and pore shape factor , as well as mechanical characterization specifically stiffness and yield strength . A detailed study was performed here to investigate the influence of substrate porosity on the adhesion and proliferation of E. coli, MRSA, and P. aeruginosa common causes of orthopedic device associated infections . Bacterial colonization was examined in terms of the initial bacterial concentration, as well as bacterial adherence to and growth on the surface and inside the pores. Results suggest that fully dense titanium supported the least bacterial colonization, while the porous titanium promoted bacterial growth in the medium and inside the cavities. Furthermore, the SPEEK coating deposited onto the samples inhibited bacteria growth inside the porous materials. In this manner, this study showed for the first time that SPEEK could have potential antibacterial properties to offset the increase in bacteria growth commonly observed in porous material

    The influence of ethylene and ethylene modulators on shoot organogenesis in tomato

    Full text link
    [EN] The influence of ethylene and ethylene modulators on the in vitro organogenesis of tomato was studied using a highly regenerating accession of the wild tomato Solanum pennellii and an F1 plant resulting from a cross between Solanum pennellii and Solanum lycopersicum cv. Anl27, which is known to have a low regeneration frequency. Four ethylene-modulating compounds, each at four levels, were used, namely: cobalt chloride (CoCl 2), which inhibits the production of ethylene; AgNO 3 (SN), which inhibits ethylene action; and Ethephon and the precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which both promote ethylene synthesis. Leaf explants of each genotype were incubated on shoot induction medium supplemented with each of these compounds at 0, 10 or 15 days following bud induction. The results obtained in our assays indicate that ethylene has a significant influence on tomato organogenesis. Concentrations of ethylene lower than the optimum (according to genotype) at the beginning of the culture may decrease the percentage of explants with buds (B), produce a delay in their appearance, or indeed inhibit bud formation. This was observed in S. pennellii and the F1 explants cultured on media with SN (5.8-58.0 ¿M) as well as in the F1 explants cultured on medium with 21.0 ¿M CoCl 2. The percentage of explants with shoots (R) and the mean number of shoots per explant with shoots (PR) also diminished in media that contained SN. Shoots isolated from these explants were less developed compared to those isolated from control explants. On the other hand, ethylene supplementation may contribute to enhancing shoot development. The number of isolable shoots from S. pennellii explants doubled in media with ACC (9.8-98.0 ¿M). Shoots isolated from explants treated with ethylene releasing compounds showed a higher number of nodes when ACC and Ethephon were added at 10 days (in F1 explants) or at 15 days (in S. pennellii) after the beginning of culture. Thus, the importance of studying not only the concentration but also the timing of the application of regulators when developing regeneration protocols has been made manifest. An excess of ethylene supplementation may produce an inhibitory effect, as was observed when using Ethephon (17.2-69.0 ¿M). These results show the involvement of ethylene in tomato organogenesis and lead us to believe that ethylene supplementation may contribute to enhancing regeneration and shoot development in tomato. © 2012 Springer Science+Business Media B.V.Carlos Trujillo has a predoctoral fellowship from the Spanish 'Ministerio de Educacion y Ciencia'. This work has been funded by Universitat Politecnica de Valencia (PAID 05-10). The technical assistance of N. Palacios and the revision of the manuscript's English by J. Bergen are gratefully acknowledged.Trujillo Moya, C.; Gisbert Domenech, MC. (2012). The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell, Tissue and Organ Culture. 111(1):141-148. https://doi.org/10.1007/s11240-012-0168-zS1411481111Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic Press, San DiegoBhatia P, Ashwath N, Senaratna T, David M (2004) Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tiss Org Cult 78:1–21Bhatia P, Ashwath N, Midmore DJ (2005) Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato. In Vitro Cell Dev Biol-Plant 41:457–464Biddington NL (1992) The Influence of ethylene in plant-tissue culture. Plant Growth Regul 11:173–187Brown DC, Thorpe TA (1995) Crop improvement through tissue culture. World J Microbiol Biotechnol 11(4):409–415Chraibi KMB, Latche A, Roustan JP, Fallot J (1991) Stimulation of shoot regeneration from cotyledons of Helianthus annuus by the ethylene inhibitors,silver and cobalt. Plant Cell Rep 10:204–207Devi R, Dhaliwal MS, Kaur A, Gosal SS (2008) Effect of growth regulators on in vitro morphogenic response of tomato. Indian J Biotechnol 7:526–530Dias LLC, Santa-Catarina C, Ribeiro DM, Barros RS, Floh EIS, Otoni WC (2009) Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tiss Org Cult 99:199–208Dimasi-Theriou K, Economou AS (1995) Ethylene enhances shoot formation in cultures of the peach rootstock GF-677 (Prunus persica × P. amygdalus). Plant Cell Rep 15:87–90Gisbert C, Arrillaga I, Roig LA, Moreno V (1999) Adquisition of a collection of Lycopersicon pennellii (Corr. D’Arcy) transgenic plants with uidA and nptII marker genes. J Hortic Sci Biotechnol 74:105–109Hughes KW (1981) In vitro ecology: exogenous factors affecting growth and morphogenesis in plant culture systems. Environ Exp Bot 21:281–288Huxter TJ, Thorpe TA, Reid DM (1981) Shoot initiation in light- and darkgrown tobacco callus: the role of ethylene. Physiol Plant 53:319–326Kumar PP, Lakshmanan P, Thorpe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103Lima JE, Benedito VA, Figueira A, Peres LEP (2009) Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. Plant Cell Rep 28:1169–1177Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tiss Org Cult 107:25–33Mohiuddin AKM, Chowdhury MKU, Abdullah ZC, Napis S (1997) Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell Tiss Org Cult 51:75–78Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant Growth Regulators III: ethylene. In: George EF, Hall MA, Klerk G-JD (eds) Plant Propaga-tion by Tissue Culture, vol 1. 3rd edn. Springer, The Netherlands, pp 239–248Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Osman MG, Khalafalla MM (2010) Promotion of in vitro shoot formation from shoot tip of tomato (Lycopersicon esculentum Mill. cv. Omdurman) by ethylene inhibitors. Int J Curr Res 4:82–86Ptak A, El Tahchy A, Wyzgolik G, Henry M, Laurain-Mattar D (2010) Effects of ethylene on somatic embryogenesis and galantamine content in Leucojum aestivum L. cultures. Plant Cell Tiss Org Cult 102:61–67Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effects of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15:685–690Reid MS (1995) Ethylene in plant growth, development and senescence. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer Acad Publ, The Netherlands, pp 486–508Trujillo-Moya C, Gisbert C, Vilanova S, Nuez F (2011) Localization of QTLs for in vitro plant regeneration in tomato. BMC Plant Biol 11: art.140Tsuchisaka A, Theologis A (2004) Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci USA 101:2275–2280Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–477

    Improvement of regeneration in pepper: a recalcitrant species

    Full text link
    [EN] Organogenesis is influenced by factors like genotype, type of explant, culture medium components, and incubation conditions. The influence of ethylene, which can be produced in the culture process, can also be a limiting factor in recalcitrant species like pepper. In this work, bud induction was achieved from cotyledons and hypocotyls-from eight pepper cultivars-on Murashige and Skoog (MS) medium supplemented with 22.2 mu M 6-benzyladenine (6BA) and 5.71 mu M indole-3-acetic acid (IAA), in media with or without silver nitrate (SN) (58.86 mu M), a suppressor of ethylene action. In the SN-supplemented medium, the frequencies of explants with buds and with callus formation were lower in both kinds of explant, but higher numbers of developed shoots were isolated from explants cultured on SN. Bud elongation was better in medium with gibberellic acid (GA(3)) (2.88 mu M) than in medium free of growth regulators or supplemented with 1-aminocyclopropane-1-carboxylic acid (ACC) at 34.5 mu M. However, isolation of shoots was difficult and few plants were recovered. The effect of adding SN following bud induction (at 7 d) and that of dark incubation (the first 7 d of culture) was also assessed in order to improve the previous results. When SN was added after bud induction, similar percentages of bud induction were found for cotyledons (average frequency 89.37% without SN and 94.37% with SN) whereas they doubled in hypocotyls (50% without SN and 87.7% with SN). In addition, in both kinds of explant, the number of developed plants able to be transferred to soil (developed and rooted) was greatly increased by SN. Dark incubation does not seem to improve organogenesis in pepper, and hypocotyl explants clearly represent a better explant choice-with respect to cotyledonary explants-for the pepper cultivars assayed.We thank the COMAV germplasm bank at Universitat Politecnica de Valencia and the Arid Lands Institute for pepper seeds and the Tunisian Ministry of Higher Education and Scientific Research who fund N. Gammoudi's stay.Gammoudi, N.; San Pedro-Galan, T.; Ferchichi, A.; Gisbert Domenech, MC. (2018). Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cellular & Developmental Biology - Plant. 54(2):145-153. https://doi.org/10.1007/s11627-017-9838-1S145153542Ashrafuzzaman M, Hossain MM, Razi Ismail M, Shahidul Haque M, Shahidullah SM, Uz Zaman S (2009) Regeneration potential of seedling explants of chilli (Capsicum annuum). Afr J Biotechnol 8:591–596Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297Brown DC, Thorpe TA (1995) Crop improvement through tissue culture. World J Microbiol Biotechnol 11:409–415Carvalho MAF, Paiva R, Stein VC, Herrera RC, Porto JMP, Vargas DP, Alves E (2014) Induction and morpho-ultrastructural analysis of organogenic calli of a wild passion fruit. Braz Arch Biol Technol 57:581–859Christopher T, Rajam MV (1996) Effect of genotype, explant and medium on in vitro regeneration of red pepper. Plant CellTiss Org Cult 46:245–250Dabauza M, Peña L (2001) High efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. Plant Growth Regul 33:221–229De Filippis LF (2014) Crop improvement through tissue culture. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (eds) Improvement of crops in the era of climate changes, vol 1. Springer, New York, pp 289–346Gammoudi N, Ben Yahia L, Lachiheb B, Ferchichi A (2016) Salt response in pepper (Capsicum annuum L.): components of photosynthesis inhibition, proline accumulation and K+/Na+ selectivity. JJ Aridland Agri 2:1–12González A, Arigita L, Majada J, Sánchez Tamés R (1997) Ethylene involvement in in vitro organogenesis and plant growth of Populus tremula L. Plant Growth Regul 22:1–6Grozeva S, Rodeva V, Todorova V (2012) In vitro shoot organogenesis in Bulgarian sweet pepper (Capsicum annuum L.) varieties. EJBio 8:39–44Gunay AL, Rao PS (1978) In vitro plant regeneration from hypocotyls and cotyledon explants of red pepper (Capsicum). Plant Sci Lett 11:365–372Huxter TJ, Thorpe TA, Reid DM (1981) Shoot initiation in light- and dark-grown tobacco callus: the role of ethylene. Physiol Plant 53:319–326Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro-Plant 32:72–80Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48Kumar AO, Rupavathi T, Tata SS (2012) Adventitious shoot bud induction in chili pepper (Capsicum annuum L. cv. X-235). In J Sci Nat 3:192–196Kumar PP, Lakshmanan P, Thorpe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103Liu W, Parrott WA, Hildebrand DF, Collins GB, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep 9:360–364Maligeppagol M, Manjula R, Navale PM, Babu KP, Kumbar BM, Laxman RH (2016) Genetic transformation of chilli (Capsicum annuum L.) with Dreb1A transcription factor known to impart drought tolerance. Indian J Biotechnol 15:17–24Mantiri FR, Kurdyukov S, Chen SK, Rose RJ (2008) The transcription factor MtSERF1 may function as a nexus between stress and development in somatic embryogenesis in Medicago truncatula. Plant Signal Behav 3:498–500Mezghani N, Jemmali A, Elloumi N, Gargouri-Bouzid R, Kintzios S (2007) Morpho-histological study on shoot bud regeneration in cotyledon cultures of pepper (Capsicum annuum). Biologia 62:704–710Mohamed-Yasseen Y (2001) Influence of agar and activated charcoal on uptake of gibberellin and plant morphogenesis in vitro. In Vitro Cell Dev Biol - Plant 37:204–205Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators III: ethylene. In: George EF, Hall MA, Klerk G-JD (eds) Plant propagation by tissue culture, vol 1, 3rdedn. Springer, Dordrecht, The Netherlands, pp 239–248Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Nogueira RC, Paiva R, de Oliveira LM, Soares GA, Soares FP, Castro AHF, Paiva PDO (2007) Calli induction from leaf explants of murici-pequeno (Byrsonima intermedia A. Juss.) Ciênc Agrotec 31:366–370Ochoa-Alejo N, Ramirez-Malagon R (2001) In vitro chili pepper biotechnology. In Vitro Cell Devl Biol Plant 37:701–729Orlińska M, Nowaczy P (2015) In vitro plant regeneration of 4 Capsicum spp. genotypes using different explant types. Turk J Biol 39:60–68Reid MS (1995) Ethylene in plant growth, development and senescence. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer Acad Publ, Dordrecht, The Netherlands, pp 486–508Sanatombi K, Sharma GJ (2008) In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. Biol Plant 52:141–145Santana-Buzzy N, Canto-Flick A, Barahona-Pérez F, Montalvo-Peniche MC, Zapata-Castillo PY, Solís-Ruiz A, Zaldívar-Collí A, Gutiérrez-Alonso O, Miranda-Ham ML (2005) Regeneration of habanero pepper (Capsicum chinense Jacq.) via organogenesis. Hortscience 40:1829–1831Santana-Buzzy N, Canto-Flick A, Iglesias-Andreu LG, Montalvo-Peniche MC, López-Puc G, Barahona-Pérez F (2006) Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. Hortscience 41:405–409Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774Shah SH, Ali S, Jan SA, Din J, Ali GM (2014) Assessment of silver nitrate on callus induction and in vitro shoot regeneration in tomato (Solanum lycopersicum Mill.) Pakistan J Bot 46:2163–2172Steinitz B, Wolf D, Matzevitch-Josef T, Zelcer A (1999) Regeneration in vitro and genetic transformation of pepper (Capsicum spp.): the current state of the art. Capsicum Eggplant Plant Newsletter 18:9–15Tamimi SM (2015) Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and aminooxyacetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.) Afr J Biotechnol 14:2510–2516Trujillo-Moya C, Gisbert C (2012) The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tissue Organ Cult 111:41–48Yasmin S, Mensuali-Sodi A, Perata P, Pucciariello C (2014) Ethylene influences in vitro regeneration frequency in the FR13A rice harbouring the SUB1A gene. Plant Growth Reg 72:97–103Zhao Y, Stiles AR, Saxena PK, Liu CZ (2013) Dark preincubation improves shoot organogenesis from Rhodiola crenulata leaf explants. Biol Plant 57:189–19

    INFOGEST static in vitro simulation of gastrointestinal food digestion

    Get PDF
    peer-reviewedSupplementary information is available at http://dx.doi.org/10.1038/s41596-018-0119-1 or https://www.nature.com/articles/s41596-018-0119-1#Sec45.Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.COST action FA1005 INFOGEST (http://www.cost-infogest.eu/ ) is acknowledged for providing funding for travel, meetings and conferences (2011-2015). The French National Institute for Agricultural Research (INRA, www.inra.fr) is acknowledged for their continuous support of the INFOGEST network by organising and co-funding the International Conference on Food Digestion and workgroup meeting

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    XVI International Congress of Control Electronics and Telecommunications: "Techno-scientific considerations for a post-pandemic world intensive in knowledge, innovation and sustainable local development"

    Get PDF
    Este título, sugestivo por los impactos durante la situación de la Covid 19 en el mundo, y que en Colombia lastimosamente han sido muy críticos, permiten asumir la obligada superación de tensiones sociales, políticas, y económicas; pero sobre todo científicas y tecnológicas. Inicialmente, esto supone la existencia de una capacidad de la sociedad colombiana por recuperar su estado inicial después de que haya cesado la perturbación a la que fue sometida por la catastrófica pandemia, y superar ese anterior estado de cosas ya que se encontraban -y aún se encuentran- muchos problemas locales mal resueltos, medianamente resueltos, y muchos sin resolver: es decir, habrá que rediseñar y fortalecer una probada resiliencia social existente - producto del prolongado conflicto social colombiano superado parcialmente por un proceso de paz exitoso - desde la tecnociencia local; como lo indicaba Markus Brunnermeier - economista alemán y catedrático de economía de la Universidad de Princeton- en su libro The Resilient Society…La cuestión no es preveerlo todo sino poder reaccionar…aprender a recuperarse rápido.This title, suggestive of the impacts during the Covid 19 situation in the world, and which have unfortunately been very critical in Colombia, allows us to assume the obligatory overcoming of social, political, and economic tensions; but above all scientific and technological. Initially, this supposes the existence of a capacity of Colombian society to recover its initial state after the disturbance to which it was subjected by the catastrophic pandemic has ceased, and to overcome that previous state of affairs since it was found -and still is find - many local problems poorly resolved, moderately resolved, and many unresolved: that is, an existing social resilience test will have to be redesigned and strengthened - product of the prolonged Colombian social conflict partially overcome by a successful peace process - from local technoscience; As Markus Brunnermeier - German economist and professor of economics at Princeton University - indicates in his book The Resilient Society...The question is not to foresee everything but to be able to react...learn to recover quickly.Bogot
    corecore