22 research outputs found

    Retinal Degeneration Progression Changes Lentiviral Vector Cell Targeting in the Retina

    Get PDF
    In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina

    Narrowing the knowledge gaps for melanoma

    Get PDF
    Cutaneous melanoma originates from pigment producing melanocytes or their precursors and is considered the deadliest form of skin cancer. For the last 40 years, few treatment options were available for patients with late-stage melanoma. However, remarkable advances in the therapy field were made recently, leading to the approval of two new drugs, the mutant BRAF inhibitor vemurafenib and the immunostimulant ipilimumab. Although these drugs prolong patients' lives, neither drug cures the disease completely, emphasizing the need for improvements of current therapies. Our knowledge about the complex genetic and biological mechanisms leading to melanoma development has increased, but there are still gaps in our understanding of the early events of melanocyte transformation and disease progression. In this review, we present a summary of the main contributing factors leading to melanocyte transformation and discuss recent novel findings and technologies that will help answer some of the key biological melanoma questions and lay the groundwork for novel therapies

    Discovering privileged topologies of molecular knots with self-assembling models

    Get PDF
    Despite the several available strategies to build complex supramolecular constructs, only a handful of different molecular knots have been synthesised so far. Here, in response to the quest for further designable topologies, we use Monte Carlo sampling and molecular dynamics simulations, informed by general principles of supramolecular assembly, as a discovery tool for thermodynamically and kinetically accessible knot types made of helical templates. By combining this approach with the exhaustive enumeration of molecular braiding patterns applicable to more general template geometries, we find that only few selected shapes have the closed, symmetric and quasi-planar character typical of synthetic knots. The corresponding collection of admissible topologies is extremely restricted. It covers all known molecular knots but it especially includes a limited set of novel complex ones that have not yet been obtained experimentally, such as 10124 and 15n41185, making them privileged targets for future self-assembling experiments

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization

    Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy.

    No full text
    Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD

    Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin

    No full text
    Nucleolar stress, characterized by loss of nucleolar integrity, has not been described in the cardiac context. In addition to ribosome biogenesis, nucleoli are critical for control of cell proliferation and stress responses. Our group previously demonstrated induction of the nucleolar protein nucleostemin (NS) in response to cardiac pathological insult. NS interacts with nucleophosmin (NPM), a marker of nucleolar stress with cytoprotective properties. The dynamic behavior of NS and NPM reveal that nucleolar disruption is an early event associated with stress response in cardiac cells. Rapid translocation of NS and NPM to the nucleoplasm and suppression of new preribosomal RNA synthesis occurs in both neonatal rat cardiomyocytes (NRCM) and cardiac progenitor cells (CPC) upon exposure to doxorubicin or actinomycin D. Silencing of NS significantly increases cell death resulting from doxorubicin treatment in CPC, whereas NPM knockdown alone induces cell death. Overexpression of either NS or NPM significantly decreases caspase 8 activity in cultured cardiomyocytes challenged with doxorubicin. The presence of altered nucleolar structures resulting from myocardial infarction in mice supports the model of nucleolar stress as a general response to pathological injury. Collectively, these findings serve as the initial description of myocardial nucleolar stress and establish the postulate that nucleoli acts as sensors of stress, regulating the cellular response to pathological insults
    corecore