30 research outputs found
Selected Mission Architectures For The Terrestrial Planet Finder (TPF): Large, Medium, and Small
Four teams incorporating scientists and engineers from more than 50 universities and 20 engineering firms have assessed techniques for detecting and characterizing terrestrial planets orbiting nearby stars. The primary conclusion from the effort of the past two years is that with suitable technology investment starting now, a mission to detect terrestrial planets around 150 nearby stars could be launched within a decade. Missions of smaller scale could carry out more modest programs capable of detecting and characterizing gas giant planets around tens of stars and of detecting terrestrial planets around the nearest stars
Magnetostriction of single crystal and polycrystalline Tb0.60Dy0.40 at cryogenic temperatures
At cryogenic temperatures, single crystals of TbDy alloys exhibit giant magnetostrictions of nearly 9000 ppm, making these materials promising for engineering service in cryogenic actuators, valves, and positioners. The preparation of single crystals is difficult and costly. Preliminary results on the magnetostriction of textured polycrystalline materials are presented here. For instance, polycrystalline Tb0.60Dy0.40, plane-rolled (one direction of applied stress) to induce crystallographic texture, has shown magnetostrictions at 77 K of 3000 ppm for an applied field of 4.5 kOe and an applied load of 23 MPa, or 48% that of a single crystal under similar conditions. Comparisons are presented between the magnetostrictive response of plane- and form-rolled (two orthogonal directions of applied stress) polycrystalline Tb0.60Dy0.40 at 10 and 77 K. It is reported that at 10 K plane-rolled Tb0.60Dy0.40 exhibits 1600 ppm magnetostriction at an applied field of 4.4 kOe with a minimal applied load of 0.28 MPa. An observed restoration of the initial unstrained state may be a useful feature of polycrystalline materials for engineering service. Finally it is reported that thermal expansion measurements provide a measure of crystallographic texture for comparison with the magnetostriction
Selected Mission Architectures For The Terrestrial Planet Finder (TPF): Large, Medium, and Small
Four teams incorporating scientists and engineers from more than 50 universities and 20 engineering firms have assessed techniques for detecting and characterizing terrestrial planets orbiting nearby stars. The primary conclusion from the effort of the past two years is that with suitable technology investment starting now, a mission to detect terrestrial planets around 150 nearby stars could be launched within a decade. Missions of smaller scale could carry out more modest programs capable of detecting and characterizing gas giant planets around tens of stars and of detecting terrestrial planets around the nearest stars
The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil
The critical-velocity behavior of oscillatory superfluid Helium-4 flow
through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil
has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up
to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during
which the frequency remained below 400 Hz, the critical velocity was a
nearly-linearly decreasing function of increasing temperature throughout the
region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi
phase slips could be observed at the onset of dissipation. In runs with
frequencies higher than 400 Hz, downward curvature was observed in the decrease
of critical velocity with increasing temperature. In addition, above 500 Hz an
alteration in supercritical behavior was seen at the lower temperatures,
involving the appearance of large energy-loss events. These irregular events
typically lasted a few tens of half-cycles of oscillation and could involve
hundreds of times more energy loss than would have occurred in a single
complete 2 Pi phase slip at maximum flow. The temperatures at which this
altered behavior was observed rose with frequency, from ~ 0.6 K and below, at
500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203
Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations
With the recent discoveries of hundreds of extrasolar planets, the search for
planets like Earth and life in the universe, is quickly gaining momentum. In
the future, large space observatories could directly detect the light scattered
from rocky planets, but they would not be able to spatially resolve a planet's
surface. Using reflectance models and real cloud data from satellite
observations, here we show that, despite Earth's dynamic weather patterns, the
light scattered by the Earth to a hypothetical distant observer as a function
of time contains sufficient information to accurately measure Earth's rotation
period. This is because ocean currents and continents result in relatively
stable averaged global cloud patterns. The accuracy of these measurements will
vary with the viewing geometry and other observational constraints. If the
rotation period can be measured with accuracy, data spanning several months
could be coherently combined to obtain spectroscopic information about
individual regions of the planetary surface. Moreover, deviations from a
periodic signal can be used to infer the presence of relatively short-live
structures in its atmosphere (i.e., clouds). This could provide a useful
technique for recognizing exoplanets that have active weather systems, changing
on a timescale comparable to their rotation. Such variability is likely to be
related to the atmospheric temperature and pressure being near a phase
transition and could support the possibility of liquid water on the planet's
surface
Simulations of Vortex Evolution and Phase Slip in Oscillatory Potential Flow of the Superfluid Component of Helium-4 Through an Aperture
The evolution of semicircular quantum vortex loops in oscillating potential
flow emerging from an aperture is simulated in some highly symmetrical cases.
As the frequency of potential flow oscillation increases, vortex loops that are
evolving so as eventually to cross all of the streamlines of potential flow are
drawn back toward the aperture when the flow reverses. As a result, the escape
size of the vortex loops, and hence the net energy transferred from potential
flow to vortex flow in such 2 Pi phase-slip events, decreases as the
oscillation frequency increases. Above some aperture-dependent and
flow-dependent threshold frequency, vortex loops are drawn back into the
aperture. Simulations are preformed using both radial potential flow and
oblate-spheroidal potential flow.Comment: 18 pages, 6 figures, sequel to cond-mat/050203
The transmission spectrum of Earth through lunar eclipse observations
Of the 342 planets discovered so far orbiting other stars, 58 "transit" the
stellar disk, meaning that they can be detected by a periodic decrease in the
starlight flux. The light from the star passes through the atmosphere of the
planet, and in a few cases the basic atmospheric composition of the planet can
be estimated. As we get closer to finding analogues of Earth, an important
consideration toward the characterization of exoplanetary atmospheres is what
the transmission spectrum of our planet looks like. Here we report the optical
and near-infrared transmission spectrum of the Earth, obtained during a lunar
eclipse. Some biologically relevant atmospheric features that are weak in the
reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and
methane) are much stronger in the transmission spectrum, and indeed stronger
than predicted by modelling. We also find the fingerprints of the Earth's
ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2),
which are missing in the reflected spectrum.Comment: Published in Nature, 11 July 2009. This file also contains the
on-line materia