122 research outputs found

    What is in a pebble shape?

    Get PDF
    We propose to characterize the shapes of flat pebbles in terms of the statistical distribution of curvatures measured along the pebble contour. This is demonstrated for the erosion of clay pebbles in a controlled laboratory apparatus. Photographs at various stages of erosion are analyzed, and compared with two models. We find that the curvature distribution complements the usual measurement of aspect ratio, and connects naturally to erosion processes that are typically faster at protruding regions of high curvature.Comment: Phys. Rev. Lett. (to appear

    The shape and erosion of pebbles

    Get PDF
    The shapes of flat pebbles may be characterized in terms of the statistical distribution of curvatures measured along their contours. We illustrate this new method for clay pebbles eroded in a controlled laboratory apparatus, and also for naturally-occurring rip-up clasts formed and eroded in the Mont St.-Michel bay. We find that the curvature distribution allows finer discrimination than traditional measures of aspect ratios. Furthermore, it connects to the microscopic action of erosion processes that are typically faster at protruding regions of high curvature. We discuss in detail how the curvature may be reliable deduced from digital photographs.Comment: 10 pages, 11 figure

    Evaporative attachment of slow electrons to alkali nanoclusters

    Full text link
    The abundance spectrum of Na^-_{n~7-140} anions formed by low energy electron attachment to free nanoclusters is measured to be strongly and nontrivially restructured with respect to the neutral precursor beam. This restructuring is explained in quantitative detail by a general framework of evaporative attachment: an electron is captured by the long-range polarization potential, its energy is transferred into thermal vibrations, and dissipated by evaporative cooling. The data also affirm a formulated relation between the binding energies of cationic, neutral, and anionic clusters, and an adjustment to the prior values of dimer evaporation energies.Comment: 9 pages, 3 figures, revise

    Negative Ions in Space

    Get PDF
    Until a decade ago, the only anion observed to play a prominent role in astrophysics was H–. The bound–free transitions in H– dominate the visible opacity in stars with photospheric temperatures less than 7000 K, including the Sun. The H– anion is also believed to have been critical to the formation of molecular hydrogen in the very early evolution of the Universe. Once H₂ formed, about 500 000 years after the Big Bang, the expanding gas was able to lose internal gravitational energy and collapse to form stellar objects and “protogalaxies”, allowing the creation of heavier elements such as C, N, and O through nucleosynthesis. Although astronomers had considered some processes through which anions might form in interstellar clouds and circumstellar envelopes, including the important role that polycyclic aromatic hydrocarbons might play in this, it was the detection in 2006 of rotational line emission from C₆H– that galvanized a systematic study of the abundance, distribution, and chemistry of anions in the interstellar medium. In 2007, the Cassini mission reported the unexpected detection of anions with mass-to-charge ratios of up to ˜10 000 in the upper atmosphere of Titan; this observation likewise instigated the study of fundamental chemical processes involving negative ions among planetary scientists. In this article, we review the observations of anions in interstellar clouds, circumstellar envelopes, Titan, and cometary comae. We then discuss a number of processes by which anions can be created and destroyed in these environments. The derivation of accurate rate coefficients for these processes is an essential input for the chemical kinetic modeling that is necessary to fully extract physics from the observational data. We discuss such models, along with their successes and failings, and finish with an outlook on the future

    Identifying networks in social media: The case of #Grexit

    Get PDF
    We examine the intensity of ‘#Grexit’ usage in Twitter during a period of economic and financial turbulence. Using a frequency-analysis technique, we illustrate that we can extract detailed information from social media data. This allows us to map the networks of interest as it is reflected in Twitter. Our findings identify high-interest in Grexit from Twitter users in key peripheral countries, core Eurozone members as well as core EU member states outside the Eurozone. Overall, our study presents a useful tool for identifying clusters. This is part of a new research agenda utilising the information extracted from big data available via social media channels

    MARK4 controls ischaemic heart failure through microtubule detyrosination.

    Get PDF
    Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.BHF fellowship grant (FS/14/28/30713), Issac Newton Trust Grant (18.40u), and Cambridge BHF Centre of Research Excellence grants (RE/13/6/30180 and RE/18/1/34212)

    A Role for the Juxtamembrane Cytoplasm in the Molecular Dynamics of Focal Adhesions

    Get PDF
    Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and play crucial roles in cell-matrix sensing. Considerable information is available on the complex molecular composition of these sites, yet the regulation of FA dynamics is largely unknown. Based on a combination of FRAP studies in live cells, with in silico simulations and mathematical modeling, we show that the FA plaque proteins paxillin and vinculin exist in four dynamic states: an immobile FA-bound fraction, an FA-associated fraction undergoing exchange, a juxtamembrane fraction experiencing attenuated diffusion, and a fast-diffusing cytoplasmic pool. The juxtamembrane region surrounding FAs displays a gradient of FA plaque proteins with respect to both concentration and dynamics. Based on these findings, we propose a new model for the regulation of FA dynamics in which this juxtamembrane domain acts as an intermediary layer, enabling an efficient regulation of FA formation and reorganization

    Tau Structures

    Get PDF
    Tau is a microtubule-associated protein that plays an important role in axonal stabilization, neuronal development, and neuronal polarity. In this review, we focus on the primary, secondary, tertiary, and quaternary tau structures. We describe the structure of tau from its specific residues until its conformation in dimers, oligomers, and larger polymers in physiological and pathological situations

    G-protein signaling: back to the future

    Get PDF
    Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gβγ heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gβγ. Gα·GTP and Gβγ target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gαq and Gβγ, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways
    corecore