395 research outputs found

    Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson’s disease and dementia with Lewy bodies

    Get PDF
    The clinicopathological heterogeneity in Lewy-body diseases (LBD) highlights the need for pathology-driven biomarkers in-vivo. Misfolded alpha-synuclein (α-Syn) is a lead candidate based on its crucial role in disease pathophysiology. Real-time quaking-induced conversion (RT-QuIC) analysis of CSF has recently shown high sensitivity and specificity for the detection of misfolded α-Syn in patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In this study we performed the CSF RT-QuIC assay in 236 PD and 49 DLB patients enriched for different genetic forms with mutations in GBA, parkin, PINK1, DJ1, and LRRK2. A subgroup of 100 PD patients was also analysed longitudinally. We correlated kinetic seeding parameters of RT-QuIC with genetic status and CSF protein levels of molecular pathways linked to α-Syn proteostasis. Overall, 85% of PD and 86% of DLB patients showed positive RT-QuIC α-Syn seeding activity. Seeding profiles were significantly associated with mutation status across the spectrum of genetic LBD. In PD patients, we detected positive α-Syn seeding in 93% of patients carrying severe GBA mutations, in 78% with LRRK2 mutations, in 59% carrying heterozygous mutations in recessive genes, and in none of those with bi-allelic mutations in recessive genes. Among PD patients, those with severe GBA mutations showed the highest seeding activity based on RT-QuIC kinetic parameters and the highest proportion of samples with 4 out of 4 positive replicates. In DLB patients, 100% with GBA mutations showed positive α-Syn seeding compared to 79% of wildtype DLB. Moreover, we found an association between α-Syn seeding activity and reduced CSF levels of proteins linked to α-Syn proteostasis, specifically lysosome-associated membrane glycoprotein 2 and neurosecretory protein VGF. These findings highlight the value of α-Syn seeding activity as an in-vivo marker of Lewy-body pathology and support its use for patient stratification in clinical trials targeting α-Syn

    Parkinson’s disease: evolution of cognitive impairment and CSF Aβ₁−₄₂ profiles in a prospective longitudinal study

    Get PDF
    OBJECTIVE: To evaluate the evolution of cognitive impairment in relation to cerebrospinal fluid (CSF) profiles of amyloid-β (Aβ), total-Tau and phosphorylated-Tau in Parkinson’s disease (PD). METHODS: Prospective, longitudinal, observational study up to 10 years with follow-up every 2  years. We assessed CSF profiles in 415 patients with sporadic PD (median age 66; 63% men) and 142 healthy controls (median age 62; 43% men). RESULTS: Patients with PD with low CSF Aβ₁−₄₂ levels at baseline were more often cognitively impaired than patients with intermediate and high Aβ₁−₄₂ levels. Sixty-seven per cent of the patients with low Aβ₁−₄₂ levels at baseline and normal cognition developed cognitive impairment during follow-up, compared with 41% and 37% of patients having intermediate and high CSF Aβ₁−₄₂ levels. Kaplan-Meier survival curves and Cox regression revealed that patients with low CSF Aβ₁−₄₂ levels at baseline developed cognitive impairment more frequently and earlier during follow-up. CONCLUSION: We conclude that in patients with sporadic PD, low levels of Aβ₁−₄₂ are associated with a higher risk of developing cognitive impairment earlier in the disease process at least in a subgroup of patients

    Green Fluorescent Protein (GFP) Color Reporter Gene Visualizes Parvovirus B19 Non-Structural Segment 1 (NS1) Transfected Endothelial Modification

    Get PDF
    Background: Human Parvovirus B19 (PVB19) has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. Methods and Findings: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP) color reporter gene in the non-structural segment 1 (NS1) of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304). The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1) and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber). NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean±standard deviation: NS1-GFP vs. control-GFP: 85.3±11.2 vs. 61.6±8.1; P<0.05) and induces endothelial expression of EMMPRIN/CD147 (CD147: mean±SEM: NS1-GFP vs. control-GFP: 114±15.3 vs. 80±0.91; P<0.05) compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05). The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR) analysis. Conclusions: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage

    IL-10 transcription is negatively regulated by BAF180, a component of the SWI/SNF chromatin remodeling enzyme

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SWI/SNF chromatin remodeling enzymes play a critical role in the development of T helper lymphocytes, including Th2 cells, and directly program chromatin structure at Th2 cytokine genes. Different versions of SWI/SNF complexes, including BAF and PBAF, have been described based on unique subunit composition. However, the relative role of BAF and PBAF in Th cell function and cytokine expression has not been reported.</p> <p>Results</p> <p>Here we examine the role of the PBAF SWI/SNF complex in Th cell development and gene expression using mice deficient for a PBAF-specific component, BAF180. We find that T cell development in the thymus and lymphoid periphery is largely normal when the BAF180 gene is deleted late in thymic development. However, BAF180-deficient Th2 cells express high levels of the immunoregulatory cytokine IL-10. BAF180 binds directly to regulatory elements in the Il-10 locus but is replaced by BAF250 BAF complexes in the absence of BAF180, resulting in increased histone acetylation and CBP recruitment to the IL-10 locus.</p> <p>Conclusions</p> <p>These results demonstrate that BAF180 is a repressor of IL-10 transcription in Th2 cells and suggest that the differential recruitment of different SWI/SNF subtypes can have direct consequences on chromatin structure and gene transcription.</p

    The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson's disease with a sexual dimorphism

    Get PDF
    The catechol-O-methyltranferase (COMT) is one of the main enzymes that metabolise dopamine in the brain. The Val158Met polymorphism in the COMT gene (rs4680) causes a trimodal distribution of high (Val/Val), intermediate (Val/Met) and low (Met/Met) enzyme activity. We tested whether the Val158Met polymorphism is a modifier of the age at onset (AAO) in Parkinson's disease (PD). The rs4680 was genotyped in a total of 16 609 subjects from five independent cohorts of European and North American origin (5886 patients with PD and 10 723 healthy controls). The multivariate analysis for comparing PD and control groups was based on a stepwise logistic regression, with gender, age and cohort origin included in the initial model. The multivariate analysis of the AAO was a mixed linear model, with COMT genotype and gender considered as fixed effects and cohort and cohort-gender interaction as random effects. COMT genotype was coded as a quantitative variable, assuming a codominant genetic effect. The distribution of the COMT polymorphism was not significantly different in patients and controls (p=0.22). The Val allele had a significant effect on the AAO with a younger AAO in patients with the Val/Val (57.1±13.9, p=0.03) than the Val/Met (57.4±13.9) and the Met/Met genotypes (58.3±13.5). The difference was greater in men (1.9 years between Val/Val and Met/Met, p=0.007) than in women (0.2 years, p=0.81). Thus, the Val158Met COMT polymorphism is not associated with PD in the Caucasian population but acts as a modifier of the AAO in PD with a sexual dimorphism: the Val allele is associated with a younger AAO in men with idiopathic PD

    Phantom : a smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics

    Get PDF
    We present Phantom, a fast, parallel, modular, and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar, galactic, planetary, and high energy astrophysics, and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, dust–gas mixtures, H2 chemistry, physical viscosity, external forces including numerous galactic potentials, Lense–Thirring precession, Poynting–Robertson drag, and stochastic turbulent driving. Phantom is hereby made publicly available.PostprintPeer reviewe

    Elevated levels of β-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren's disease cells are regulated by tension in vitro

    Get PDF
    BACKGROUND: Dupuytren's contracture or disease (DD) is a fibro-proliferative disease of the hand that results in the development of scar-like, collagen-rich disease cords within specific palmar fascia bands. Although the molecular pathology of DD is unknown, recent evidence suggests that β-catenin may play a role. In this study, collagen matrix cultures of primary disease fibroblasts show enhanced contraction and isometric tension-dependent changes in β-catenin and fibronectin levels. METHODS: Western blots of β-catenin and fibronectin levels were determined for control and disease primary cell cultures grown within stressed- and attached-collagen matrices. Collagen contraction was quantified, and immunocytochemistry analysis of filamentous actin performed. RESULTS: Disease cells exhibited enhanced collagen contraction activity compared to control cells. Alterations in isometric tension of collagen matrices triggered dramatic changes in β-catenin and fibronectin levels, including a transient increase in β-catenin levels within disease cells, while fibronectin levels steadily decreased to levels below those seen in normal cell cultures. In contrast, both fibronectin and β-catenin levels increased in attached collagen-matrix cultures of disease cells, while control cultures showed only increases in fibronectin levels. Immunocytochemistry analysis also revealed extensive filamentous actin networks in disease cells, and enhanced attachment and spreading of disease cell in collagen matrices. CONCLUSION: Three-dimensional collagen matrix cultures of primary disease cell lines are more contractile and express a more extensive filamentous actin network than patient-matched control cultures. The elevated levels of β-catenin and Fn seen in collagen matrix cultures of disease fibroblasts can be regulated by changes in isometric tension

    Differentiation-Inducing Factor-1 and -2 Function also as Modulators for Dictyostelium Chemotaxis

    Get PDF
    BackgroundIn the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2) were originally identified as the factors (chlorinated alkylphenones) that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions.Methodology/Principal FindingsTo further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase) and a decrease in the intracellular cGMP concentration ([cGMP]i). DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase) and an increase in [cGMP]i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part.Conclusions/SignificanceOur findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules) for chemotaxis having differentiation-inducing activity

    Multiwavelength observations of short time-scale variability in NGC 4151. IV. Analysis of multiwavelength continuum variability

    Full text link
    This paper combines data from the three preceding papers in order to analyze the multi-waveband variability and spectral energy distribution of the Seyfert~1 galaxy NGC~4151 during the December 1993 monitoring campaign. The source, which was near its peak historical brightness, showed strong, correlated variability at X-ray, ultraviolet, and optical wavelengths. The strongest variations were seen in medium energy (\sim1.5~keV) X-rays, with a normalized variability amplitude (NVA) of 24\%. Weaker (NVA = 6\%) variations (uncorrelated with those at lower energies) were seen at soft γ\gamma-ray energies of \sim100~keV. No significant variability was seen in softer (0.1--1~keV) X-ray bands. In the ultraviolet/optical regime, the NVA decreased from 9\% to 1\% as the wavelength increased from 1275~\AA\ to 6900~\AA. These data do not probe extreme ultraviolet (1200~\AA\ to 0.1~keV) or hard X-ray (2--50~keV) variability. The phase differences between variations in different bands were consistent with zero lag, with upper limits of \ls0.15~day between 1275~\AA\ and the other ultraviolet bands, \ls0.3~day between 1275~\AA\ and 1.5~keV, and \ls1~day between 1275~\AA\ and 5125~\AA. These tight limits represent more than an order of magnitude improvement over those determined in previous multi-waveband AGN monitoring campaigns. The ultraviolet fluctuation power spectra showed no evidence for periodicity, but were instead well-fitted with a very steep, red power-law (a=2.5 a = -2.5 ). If photons emitted at a ``primary" waveband are absorbed by nearby material and ``reprocessed" to produce emission at a secondary waveband, causality arguments require that variations in the secondary band follow those in the primary band. The tight interband correlation and limits on the ultraviolet andComment: 35 pages, LaTeX (including aaspp4), including 7 PostScript figures; To appear in the ApJ (October 20, 1996) Vol. 47
    corecore