163 research outputs found
Three-dimensional track reconstruction for directional Dark Matter detection
Directional detection of Dark Matter is a promising search strategy. However,
to perform such detection, a given set of parameters has to be retrieved from
the recoiling tracks : direction, sense and position in the detector volume. In
order to optimize the track reconstruction and to fully exploit the data of
forthcoming directional detectors, we present a likelihood method dedicated to
3D track reconstruction. This new analysis method is applied to the MIMAC
detector. It requires a full simulation of track measurements in order to
compare real tracks to simulated ones. We conclude that a good spatial
resolution can be achieved, i.e. sub-mm in the anode plane and cm along the
drift axis. This opens the possibility to perform a fiducialization of
directional detectors. The angular resolution is shown to range between
20 to 80, depending on the recoil energy, which is however
enough to achieve a high significance discovery of Dark Matter. On the
contrary, we show that sense recognition capability of directional detectors
depends strongly on the recoil energy and the drift distance, with small
efficiency values (50%-70%). We suggest not to consider this information either
for exclusion or discovery of Dark Matter for recoils below 100 keV and then to
focus on axial directional data.Comment: 27 pages, 20 figure
Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications
Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed
Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder
This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
Discrete water column measurements of CO 2 fugacity and pH T in seawater: A comparison of direct measurements and thermodynamic calculations
The NOAA Eq. Pac. CO
2 system data set (≃2500 water samples) has been evaluated to assess the internal consistency of measurements and calculations involving CO
2 fugacity and pH
T. This assessment represents the first large scale field comparison of pH
T and
f
CO
2
data. Comparisons of direct discrete CO
2 fugacity (
f
CO
2
) measurements with CO
2 fugacity calculated from total inorganic carbon (
C
T), total alkalinity (
A
T) and spectrophotometric pH (pH
T=−log[H
+]
T) indicate that a variety of improvements are needed in the parameter measurements and thermodynamic relationships used to relate
f
CO
2
,
C
T,
A
T and pH
T in seawater. CO
2 fugacity calculated from
C
T and pH
T or
A
T and pH
T agree with direct measurements to no better than 1%. Comparisons of measured fugacity,
f
CO
2
(measured), and CO
2 fugacity calculated from
C
T and pH
T,
f
CO
2
(
C
T, pH
T), indicate that the precision of
f
CO
2
calculations is good relative to direct measurements. In contrast, due to the extreme sensitivity of
f
CO
2
and [H
+]
T calculations to relatively small errors in both
C
T and
A
T, CO
2 fugacity, as well as [H
+]
T, calculated from
C
T and
A
T are very imprecise and render comparisons with direct measurements of little use. Consequently, precise calculations of
f
CO
2
require the use of direct pH
T measurements
- …