301 research outputs found

    Global expression profiling in leaves of free-growing aspen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic studies are routinely performed on young plants in controlled environments which is very different from natural conditions. In reality plants in temperate countries are exposed to large fluctuations in environmental conditions, in the case of perennials over several years. We have studied gene expression in leaves of a free-growing aspen (<it>Populus tremula</it>) throughout multiple growing seasons</p> <p>Results</p> <p>We show that gene expression during the first month of leaf development was largely determined by a developmental program although leaf expansion, chlorophyll accumulation and the speed of progression through this program was regulated by the temperature. We were also able to define "transcriptional signatures" for four different substages of leaf development. In mature leaves, weather factors were important for gene regulation.</p> <p>Conclusion</p> <p>This study shows that multivariate methods together with high throughput transcriptional methods in the field can provide additional, novel information as to plant status under changing environmental conditions that is impossible to mimic in laboratory conditions. We have generated a dataset that could be used to e.g. identify marker genes for certain developmental stages or treatments, as well as to assess natural variation in gene expression.</p

    K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kernel-based classification and regression methods have been successfully applied to modelling a wide variety of biological data. The Kernel-based Orthogonal Projections to Latent Structures (K-OPLS) method offers unique properties facilitating separate modelling of predictive variation and structured noise in the feature space. While providing prediction results similar to other kernel-based methods, K-OPLS features enhanced interpretational capabilities; allowing detection of unanticipated systematic variation in the data such as instrumental drift, batch variability or unexpected biological variation.</p> <p>Results</p> <p>We demonstrate an implementation of the K-OPLS algorithm for MATLAB and R, licensed under the GNU GPL and available at <url>http://www.sourceforge.net/projects/kopls/</url>. The package includes essential functionality and documentation for model evaluation (using cross-validation), training and prediction of future samples. Incorporated is also a set of diagnostic tools and plot functions to simplify the visualisation of data, e.g. for detecting trends or for identification of outlying samples. The utility of the software package is demonstrated by means of a metabolic profiling data set from a biological study of hybrid aspen.</p> <p>Conclusion</p> <p>The properties of the K-OPLS method are well suited for analysis of biological data, which in conjunction with the availability of the outlined open-source package provides a comprehensive solution for kernel-based analysis in bioinformatics applications.</p

    A cross-species transcriptomics approach to identify genes involved in leaf development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have made use of publicly available gene expression data to identify transcription factors and transcriptional modules (regulons) associated with leaf development in <it>Populus</it>. Different tissue types were compared to identify genes informative in the discrimination of leaf and non-leaf tissues. Transcriptional modules within this set of genes were identified in a much wider set of microarray data collected from leaves in a number of developmental, biotic, abiotic and transgenic experiments.</p> <p>Results</p> <p>Transcription factors that were over represented in leaf EST libraries and that were useful for discriminating leaves from other tissues were identified, revealing that the C2C2-YABBY, CCAAT-HAP3 and 5, MYB, and ZF-HD families are particularly important in leaves. The expression of transcriptional modules and transcription factors was examined across a number of experiments to select those that were particularly active during the early stages of leaf development. Two transcription factors were found to collocate to previously published Quantitative Trait Loci (QTL) for leaf length. We also found that miRNA family 396 may be important in the control of leaf development, with three members of the family collocating with clusters of leaf development QTL.</p> <p>Conclusion</p> <p>This work provides a set of candidate genes involved in the control and processes of leaf development. This resource can be used for a wide variety of purposes such as informing the selection of candidate genes for association mapping or for the selection of targets for reverse genetics studies to further understanding of the genetic control of leaf size and shape.</p

    MASQOT: a method for cDNA microarray spot quality control

    Get PDF
    BACKGROUND: cDNA microarray technology has emerged as a major player in the parallel detection of biomolecules, but still suffers from fundamental technical problems. Identifying and removing unreliable data is crucial to prevent the risk of receiving illusive analysis results. Visual assessment of spot quality is still a common procedure, despite the time-consuming work of manually inspecting spots in the range of hundreds of thousands or more. RESULTS: A novel methodology for cDNA microarray spot quality control is outlined. Multivariate discriminant analysis was used to assess spot quality based on existing and novel descriptors. The presented methodology displays high reproducibility and was found superior in identifying unreliable data compared to other evaluated methodologies. CONCLUSION: The proposed methodology for cDNA microarray spot quality control generates non-discrete values of spot quality which can be utilized as weights in subsequent analysis procedures as well as to discard spots of undesired quality using the suggested threshold values. The MASQOT approach provides a consistent assessment of spot quality and can be considered an alternative to the labor-intensive manual quality assessment process

    Plant dieback under exceptional drought driven by elevation, not by plant traits, in Big Bend National Park, Texas, USA

    Get PDF
    In 2011, Big Bend National Park, Texas, USA, experienced the most severe single year drought in its recorded history, resulting in significant plant mortality. We used this event to test how perennial plant response to drought varied across elevation, plant growth form and leaf traits. In October 2010 and October 2011, we measured plant cover by species at six evenly-spaced elevations ranging from Chihuahuan desert (666 m) to oak forest in the Chisos mountains (1,920 m). We asked the following questions: what was the relationship between elevation and stem dieback and did susceptibility to drought differ among functional groups or by leaf traits? In 2010, pre-drought, we measured leaf mass per area (LMA) on each species. In 2011, the percent of canopy dieback for each individual was visually estimated. Living canopy cover decreased significantly after the drought of 2011 and dieback decreased with elevation. There was no relationship between LMA and dieback within elevations. The negative relationship between proportional dieback and elevation was consistent in shrub and succulent species, which were the most common growth forms across elevations, indicating that dieback was largely driven by elevation and not by species traits. Growth form turnover did not influence canopy dieback; differences in canopy cover and proportional dieback among elevations were driven primarily by differences in drought severity. These results indicate that the 2011 drought in Big Bend National Park had a large effect on communities at all elevations with average dieback for all woody plants ranging from 8% dieback at the highest elevation to 83% dieback at lowest elevations

    Evaluation of O2PLS in Omics data integration

    Get PDF
    Background: Rapid computational and technological developments made large amounts of omics data available in different biological levels. It is becoming clear that simultaneous data analysis methods are needed for better interpretation and understanding of the underlying systems biology. Different methods have been proposed for this task, among them Partial Least Squares (PLS) related methods. To also deal with orthogonal variation, systematic variation in the data unrelated to one another, we consider the Two-way Orthogonal PLS (O2PLS): an integrative data analysis method which is capable of modeling systematic variation, while providing more parsimonious models aiding interpretation. Results: A simulation study to assess the performance of O2PLS showed positive results in both low and higher dimensions. More noise (50 % of the data) only affected the systematic part estimates. A data analysis was conducted using data on metabolomics and transcriptomics from a large Finnish cohort (DILGOM). A previous sequential study, using the same data, showed significant correlations between the Lipo-Leukocyte (LL) module and lipoprotein metabolites. The O2PLS results were in agreement with these findings, identifying almost the same set of co-varying variables. Moreover, our integrative approach identified other associative genes and metabolites, while taking into account systematic variation in the data. Including orthogonal components enhanced overall fit, but the orthogonal variation was difficult to interpret. Conclusions: Simulations showed that the O2PLS estimates were close to the true parameters in both low and higher dimensions. In the presence of more noise (50 %), the orthogonal part estimates could not distinguish well between joint and unique variation. The joint estimates were not systematically affected. Simultaneous analysis with O2PLS on metabolome and transcriptome data showed that the LL module, together with VLDL and HDL metabolites, were important for the metabolomic and transcriptomic relation. This is in agreement with an earlier study. In addition more gene expression and metabolites are identified being important for the joint covariation

    MetaFIND: A feature analysis tool for metabolomics data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolomics, or metabonomics, refers to the quantitative analysis of all metabolites present within a biological sample and is generally carried out using NMR spectroscopy or Mass Spectrometry. Such analysis produces a set of peaks, or <it>features</it>, indicative of the metabolic composition of the sample and may be used as a basis for sample classification. Feature selection may be employed to improve classification accuracy or aid model explanation by establishing a subset of class discriminating features. Factors such as experimental noise, choice of technique and threshold selection may adversely affect the set of selected features retrieved. Furthermore, the high dimensionality and multi-collinearity inherent within metabolomics data may exacerbate discrepancies between the set of features retrieved and those required to provide a complete explanation of metabolite signatures. Given these issues, the latter in particular, we present the MetaFIND application for 'post-feature selection' correlation analysis of metabolomics data.</p> <p>Results</p> <p>In our evaluation we show how MetaFIND may be used to elucidate metabolite signatures from the set of features selected by diverse techniques over two metabolomics datasets. Importantly, we also show how MetaFIND may augment standard feature selection and aid the discovery of additional significant features, including those which represent novel class discriminating metabolites. MetaFIND also supports the discovery of higher level metabolite correlations.</p> <p>Conclusion</p> <p>Standard feature selection techniques may fail to capture the full set of relevant features in the case of high dimensional, multi-collinear metabolomics data. We show that the MetaFIND 'post-feature selection' analysis tool may aid metabolite signature elucidation, feature discovery and inference of metabolic correlations.</p

    Cytokine-associated drug toxicity in human hepatocytes is associated signaling network dysregulation

    Get PDF
    Refer to Web version on PubMed Central for supplementary material.Idiosyncratic drug hepatotoxicity is a major problem in pharmaceutical development due to poor prediction capability of standard preclinical toxicity assessments and limited knowledge of its underlying mechanisms. Findings in animal models have shown that adverse effects of numerous drugs with idiosyncratic hepatotoxicity in humans can be reproduced in the presence of coincident inflammatory cytokine signaling. Following these observations, we have recently developed an in vitro drug/inflammatory cytokine co-treatment approach that can reproduce clinical drug hepatotoxicity signatures—particularly for idiosyncratic drugs—in cultured primary human hepatocytes. These observations have suggested that drug-induced stresses may interact with cytokine signaling to induce hepatic cytotoxicity, but the hepatocyte signaling mechanisms governing these interactions are poorly understood. Here, we collect high-throughput phosphoprotein signaling and cytotoxicity measurements in cultured hepatocytes, from multiple human donors, treated with combinations of hepatotoxic drugs (e.g. trovafloxacin, clarithromycin) and cytokines (tumor necrosis factor-α, interferon-γ, interleukin-1α, and interleukin-6). We demonstrate, through orthogonal partial least-squares regression (OPLSR) modeling of these signal-response data, that drug/cytokine hepatic cytotoxicity is integratively controlled by four key signaling pathways: Akt, p70 S6 kinase, MEK–ERK, and p38–HSP27. This modeling predicted, and experimental studies confirmed, that the MEK–ERK and p38–HSP27 pathways contribute pro-death signaling influences in drug/cytokine hepatic cytotoxicity synergy. Further, our four-pathway OPLSR model produced successful prediction of drug/cytokine hepatic cytotoxicities across different human donors, even though signaling and cytotoxicity responses were both highly donor-specific. Our findings highlight the critical role of kinase signaling in drug/cytokine hepatic cytotoxicity synergies and reveal that hepatic cytotoxicity responses are governed by multi-pathway signaling network balance.Pfizer Inc.Institute for Collaborative BiotechnologiesMIT Center for Cell Decision ProcessesNational Institute of Mental Health (U.S.) (grant P50-GM68762)Massachusetts Institute of Technology. Biotechnology Process Engineering CenterMassachusetts Institute of Technology. Center for Environmental Health SciencesNational Institute of Mental Health (U.S.) (grant U19ES011399)Whitaker Foundatio

    Variation of metabolic profiles in developing maize kernels up- and down-regulated for the hda101 gene

    Get PDF
    To shed light on the specific contribution of HDA101 in modulating metabolic pathways in the maize seed, changes in the metabolic profiles of kernels obtained from hda101 mutant plants have been investigated by a metabonomic approach. Dynamic properties of chromatin folding can be mediated by enzymes that modify DNA and histones. The enzymes responsible for the steady-state of histone acetylation are histone acetyltransferase and histone deacetylase (HDA). Therefore, it is interesting to evaluate the effects of up- and down-regulation of a Rpd-3 type HDA on the development of maize seeds in terms of metabolic changes. This has been reached by analysing nuclear magnetic resonance spectra by different chemometrician approaches, such as Orthogonal Projection to Latent Structure-Discriminant Analysis, Parallel Factors Analysis, and Multi-way Partial Least Squares-Discriminant Analysis (N-PLS-DA). In particular, the latter approaches were chosen because they explicitly take time into account, organizing data into a set of slices that refer to different steps of the developing process. The results show the good discriminating capabilities of the N-PLS-DA approach, even if the number of samples ought be increased to obtain better predictive capabilities. However, using this approach, it was possible to show differences in the accumulation of metabolites during development and to highlight the changes occuring in the modified seeds. In particular, the results confirm the role of this gene in cell cycle control
    corecore