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Abstract
Idiosyncratic drug hepatotoxicity is a major problem in pharmaceutical development due to poor
prediction capability of standard preclinical toxicity assessments and limited knowledge of its
underlying mechanisms. Findings in animal models have shown that adverse effects of numerous
drugs with idiosyncratic hepatotoxicity in humans can be reproduced in the presence of coincident
inflammatory cytokine signaling. Following these observations, we have recently developed an in
vitro drug/inflammatory cytokine co-treatment approach that can reproduce clinical drug
hepatotoxicity signatures -- particularly for idiosyncratic drugs -- in cultured primary human
hepatocytes. These observations have suggested that drug-induced stresses may interact with
cytokine signaling to induce hepatic cytotoxicity, but the hepatocyte signaling mechanisms
governing these interactions are poorly understood. Here, we collect high-throughput phosphoprotein
signaling and cytotoxicity measurements in cultured hepatocytes, from multiple human donors,
treated with combinations of hepatotoxic drugs (e.g. trovafloxacin, clarithromycin) and cytokines
(tumor necrosis factor-α, interferon-γ, interleukin-1α, and interleukin-6). We demonstrate, through
orthogonal partial least-squares regression (OPLSR) modeling of these signal-response data, that
drug/cytokine hepatic cytotoxicity is integratively controlled by four key signaling pathways: Akt,
p70 S6 kinase, MEK–ERK, and p38–HSP27. This modeling predicted, and experimental studies
confirmed, that the MEK–ERK and p38–HSP27 pathways contribute pro-death signaling influences
in drug/cytokine hepatic cytotoxicity synergy. Further, our four-pathway OPLSR model produced
successful prediction of drug/cytokine hepatic cytotoxicities across different human donors, even
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though signaling and cytotoxicity responses were both highly donor-specific. Our findings highlight
the critical role of kinase signaling in drug/cytokine hepatic cytotoxicity synergies and reveal that
hepatic cytotoxicity responses are governed by multi-pathway signaling network balance.
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Introduction
Hepatotoxicity† is a major cause of failures in the pre-clinical, clinical and post-approval stages
of drug development and thus represents a major challenge for the pharmaceutical industry1,
2. Idiosyncratic drug hepatotoxicity -- a hepatotoxicity subset that occurs in a very small
fraction of human patients (~1 in 10,000) and accounts for ~10% of acute liver failure cases --
is poorly predicted by standard preclinical models and in clinical trials and frequently leads to
post-approval drug failure3. Following the establishment of bacterial liposaccharide (LPS)-
administered rodent models to assess inflammation-associated idiosyncratic drug
hepatotoxicity3, 4, we have previously developed an drug/inflammatory cytokine co-treatment
cell culture approach for studying inflammation-associated drug hepatic cytotoxicity in
vitro5. Our approach demonstrated that numerous drugs with clinical findings of idiosyncratic
chronic hepatotoxicity, but not their non-toxic control compounds, exhibit synergistic
induction of acute hepatocellular death in multiple hepatocyte cell culture models co-dosed
with drugs and cytokines at concentrations near their upper limits of clinical liver exposure. In
that work, we showed that the drugs exhibiting inflammation-associated toxicities induce mild
hepatocellular stresses that synergize with cytokine signaling to elicit hepatocellular death3. A
novel concept speculated upon therein was that signaling network dysregulation underlies
cooperative drug/cytokine hepatic cytotoxicity, and we now undertake direct examination of
that hypothesis in this study.

The factors identified as potentiating inflammation-associated drug hepatic cytotoxicity (LPS
and the cytokines tumor necrosis factor-α [TNF], interferon-γ [IFN-γ], interleukin-1α
[IL-1α], and interleukin-6 [IL-6]) . in these animal and cell culture models stimulate a diversity
of intracellular signaling pathways related to hepatocyte survival, stress, and apoptosis6-11
(Fig. 1). For example, TNF activates the MEK–ERK, IKK–NF-κB, JNK, and p38–HSP27
signaling pathways and the caspase cascade, whose integrated activities specify hepatocyte
death responses to TNF6, 12. Further, physiologically relevant growth factor co-stimuli such
as insulin can provide activation of survival signaling pathways that antagonize cytokine-
induced apoptosis13, 14 and modulate hepatocyte metabolism of xenobiotic compounds15. How
these pathways regulate drug/cytokine toxicity outcomes in hepatocytes is not clear, but there
is evidence that, in a LPS-administered mouse model, hepatotoxicity synergy between LPS-
induced cytokine release and the idiosyncratic hepatotoxicant ranitidine is dependent on p38-
mediated TNF release in the resident liver macrophages, Kupffer cells11, 16-18. Drug-induced
hepatocellular stresses can induce activation of many of the signaling pathways stimulated by
cytokines and/or growth factors (Fig. 1). Glutathione depletion can perturb cellular nutrient
levels, possibly leading to attenuation of mTOR signaling19, 20, and can alter mitochondrial
redox potentials, increasing susceptibility to mitochondria-mediated apoptosis21. Reactive
oxygen species accumulation can activate the JNK and p38–HSP27 stress-response signaling
pathways6. Consequently, we hypothesize that further identification of the signaling

†We define “hepatotoxicity” as in vivo liver toxicity, largely arising from hepatocyte injury and/or death. We define “hepatic cytotoxicity”
as in vitro and in vivo hepatocyte injury and/or death.
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mechanisms governing hepatocyte cell death responses to hepatotoxicants and inflammatory
cytokines would benefit from a network-level examination of multiple intracellular signaling
pathways.

Here, we use orthogonal partial least-squares regression (OPLSR) data modeling to analyze a
hepatic cytotoxicity data compendium, spanning diverse drug/cytokine stimulation
combinations and containing measurements of 17 phosphoproteins from multiple signaling
pathways and a cell toxicity readout, in cultured human hepatocytes. OPLSR modeling
indicated that the activation profiles of four signaling pathways -- Akt, p70 S6K, MEK–ERK,
and p38–HSP27 -- are sufficient to accurately predict toxicity responses to drug/cytokine co-
treatments. Model predictions of pro-death contributions from p38–HSP27 and, counter-
intuitively, MEK–ERK signaling were confirmed using small molecule kinase inhibitors. This
work highlights the importance of a multi-pathway signaling network state for characterizing
hepatic cytotoxicity arising from drug/cytokine synergies.

Results
Drug/cytokine co-treatments elicit shared regulation of multiple phosphoprotein signaling
pathways

To examine the signaling mechanisms regulating inflammatory cytokine-associated drug
hepatic cytotoxicity, we collected a ‘cue-signal-response’ (CSR) drug- and cytokine-induced
hepatic cytotoxicity data compendium in primary human hepatocytes (Fig. 2). Human
hepatocytes (donor #1) were treated with 66 different combinations of 11 ‘drug’ conditions
(six compounds with inflammation-associated hepatic cytotoxicity, four corresponding
‘comparison’‡ compounds, and a DMSO control) and six ‘cytokine’ conditions (no cytokine,
TNF, IL-1α, IL-6, LPS, and a mix containing all three cytokines and LPS). The hepatotoxicants
(e.g. trovafloxacin, nefazodone, nimesulide, clarithromycin) and cytokines were selected based
on identification of their role in inducing synergistic hepatic cytotoxicity synergy in our
previous large-scale drug/cytokine co-treatment screen5. This study focused on single drug
and cytokine dosing concentrations (drugs at 100*plasma Cmax5, 22) -- rather than examining
drug and/or cytokine dose-response effects -- in order to enable a diversity of combinatorial
drug/cytokine treatments within the constraints of limited human primary hepatocyte samples.
Bead-based phosphoprotein and LDH release assays were used to quantitatively assess
signaling pathway activation and cell death, respectively. Seventeen phosphoproteins,
including signaling components of the MEK–ERK, mTOR–p70 S6K, PI3K–Akt, IKK–NF-
κB, JNK, p38–HSP27, STAT3, STAT6, cell cycle regulatory, and DNA damage signaling
pathways, were measured at both early (0 and 20 min) and delayed time-points (4, 24, and 48
hr) following drug and/or cytokine stimulation to capture a diversity of intracellular signaling
dynamics. These pathways are downstream of the cytokine and growth factor stimuli examined,
but to our knowledge have not been reported to be directly regulated by the drugs used in this
study (Fig. 1).

Across this CSR compendium, it was evident that cytokine-only treatments induced early-
phase (20 min-4 hr) activation of multiple signals, including p-MEK1, p-STAT3, p-IκB-α, and
p-p38. Many toxic drug-only treatments induced a late-phase (24-48 hr) down-regulation of
certain pro-survival signals (e.g. p-Akt, p-p70 S6K; see also Fig. 3D-E). This late-phase down-
regulation was not evident for all phosphoproteins, as some survival (e.g. p-ERK1/2) and stress
(e.g. p-HSP27) signals had sustained activation under toxic conditions (see also Fig. 4C,F).
Multiple drug/cytokine co-treatments (e.g. trovafloxacin ± the three-cytokine/LPS mix)

‡‘Comparison’ compounds are defined as paired control compounds to hepatotoxicants with similar molecular target(s), clinical
indication, and chemical structure but are non-hepatotoxic.
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synergistically induced both sustained p38–HSP27 signaling and cell death (Fig. 1 [donor #1]
and Fig. 4B,F [donor #2]). This paired synergy raised the possibility that a single
phosphoprotein signal might unilaterally yield a predictive readout of cell death across the
entire data compendium. However, we calculated the correlation (Pearson coefficients)
between observed cell death at 48 hours post-drug/cytokine co-treatment and each 17
phosphoprotein signal levels, and even the most positively (p-HSP27 at t = 4 hr, R = 0.78) and
negatively (p-Akt at t = 24 hr, R = −0.74) correlated single phosphoprotein was poorly
predictive of measured cell death (Fig. S3). This demonstrated need for multivariate analysis
of signal-response relationships present in drug- and cytokine-induced hepatic cytotoxicity.

Multi-pathway OPLSR modeling identifies key molecular signals associated with drug- and
cytokine-induced hepatic cytotoxicity

A spectrum of modeling approaches23, 24 are suited for analysis of signal transduction networks
and their relationships to phenotypic cellular responses to diverse stimuli, but many of these
approaches require a priori knowledge of how cellular stimuli are connected to signaling
pathways and how those pathways mechanistically govern cellular responses of interest. The
limited understanding of how idiosyncratic hepatotoxicants and inflammatory cytokine signals
interact to synergistically induce hepatocyte cell death motivates the use of data-driven
modeling approaches such as partial least-squares regression (PLSR), decision trees, and
multiple linear regression, which can identify novel connectivities between measured signaling
pathways and cellular responses without requiring an a priori network structure. From these
approaches, we chose here to employ a variant of partial least-squares regression, which has
been previously successful in establishing novel signal-response relationships from high-
throughput signaling and response data13, 23, 25-28. PLSR can make predictions of cellular
responses across diverse cell types and experimental conditions and be used to reduce
complexity in multi-variate protein signaling data to identify the most critical signaling nodes.

To generate a multi-pathway model relating the observed signaling activities and cell death
responses, we subjected the initial CSR data compendium to orthogonal partial-least squares
regression (OPLSR). OPLSR modeling relates the measured phosphoprotein signaling data
matrix (X) and the observed hepatocellular death responses (Y), each arrayed across all 66
treatment conditions, through a linear regression of the relationship Y = X·B, where B is a
vector of regression coefficients that reflect how each phosphoprotein signal contributes to cell
death. Following regression, the “fitness”of an OPLSR model can be assessed by comparing
how the model “predicts”the cell death responses by multiplying the experimental signaling
measurements with the model regression coefficients, and then calculating model fitness28,
29 by comparing the “predicted”and experimentally observed responses. We note that, in
contrast to previous studies13, 25, 26, 28 implementing cell signaling-response PLSR modeling
in cell line systems, our training data here comprises single biological replicates due to the
severe limitations of human donor tissue samples; we chose to trade biological replication for
a greater landscape of treatment conditions, within the constraints of this patient-oriented study.

Here, we found that an OPLSR model based of 102 phosphoprotein signaling metrics (17
phosphoproteins × 6 time-dependent metrics; see Experimental) demonstrated very good
model fitness (R2 = 0.92) for cross-validated predictions of the observed cell death responses
for all 66 drug/cytokine co-treatment conditions (Fig. 3A). Examination of the OPLSR model
scores28, 30 projections (Fig. S2D) demonstrated the model's ability to distinguish between
toxic and non-toxic treatment conditions by their scores in the first principal component (PC),
which represents pro-death model contributions. The second PC of this OPLSR model captures
remaining, orthogonal variation in the CSR data compendium irrelevant to response prediction.

OPLSR model loadings28, 30 (w1*c1
; Fig. 3B and Fig. S4A) reflect the regression coefficients

of the signaling metrics; positive model loadings imply signaling metrics with pro-death
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contributions, and negative model loadings imply pro-survival contributions. Model variable-
importance-of-projection (VIP) scores (Fig. 3B-C and Fig. S4B-C) reflect the relative
importance of individual signaling metrics to the model fitness by capturing the loss in model
fitness upon removal of their associated signaling metric28, 30, 31. Metrics with VIP score >1
have significant importance in the model whereas metrics with a VIP score <<1 significantly
lack unique information in the model. Inspection of model loadings and VIP scores identified
four signaling pathways (MEK–ERK, Akt, p70 S6K, and p38–HSP27) with phosphoproteins
having informative model contributions from four or more signaling metrics (Fig. 3B-C). p-
ERK1/2, p-p38, and p-HSP27 were all identified as having significant pro-death contributions
from multiple metrics, and p-Akt and p-p70 S6K were identified as having significant pro-
survival contributions from multiple metrics. The identification of MEK–ERK signaling as
having pro-death contributions by the model may seem surprising in light of this pathway's
more commonly presumed pro-survival role, although this pathway has been recently found
to similarly provide pro-death influence under inflammatory cytokine treatment in other human
epithelial cell types32; this effect is very clear in our study here given the sustained activation
of MEK–ERK signaling evident under certain drug treatments (e.g. clarithromycin; Fig. 2
[donor #1] and Fig. 4C [donor #2]). For all 17 measured phosphoprotein, early time-point (20
min) metrics were uninformative as assessed by VIP scores (Fig. 2B and Fig. S4C), likely
because these signaling activities were similarly activated by cytokines in both presence and
absence of drug co-stimuli. In contrast, metrics from later time points (4-48 hr) and the average
and integral metrics were, on average, more informative (Fig. 2B and Fig. S4C).

The distinct importance of these four signaling pathways suggested that many of the
phosphoproteins in the full CSR data compendium were neglectable for model prediction,
permitting model reduction to more easily interpretable subset of signals. To test this,
phosphoproteins (and all six of their associated signaling metrics) were removed from the
model stepwise in order of the lowest average VIP score across all six metrics (Fig. 3D). Model
fitness was maintained until the top ~5 phosphoproteins remained (R2 = ~0.87-0.91); further
removal of phosphoproteins resulted in the significant losses in model fitness. A similar trend
in loss of model fitness was observed by model reduction by removal of each of the 102
individual signaling metrics in order of the lowest VIP scores (Fig. S4D). Thus, an equivalently
predictive multi-pathway network model could be generated by focusing on representative
phosphoproteins from four pathways -- MEK–ERK, Akt, p70 S6K, and p38–HSP27 -- and
representative phosphoproteins (p-ERK1/2, p-Akt, p-p70 S6K, and p-HSP27, with R2 = 0.89;
Fig. 3A,D) from these pathways can serve as a signaling ‘network gauge’25 (Fig. S5), whose
combined activities specify hepatocellular death responses to drug/cytokine treatment.

Multi-pathway OPLSR model successfully predicts hepatic cytotoxicity signal-response
relationships across human hepatocyte donors

In this study, human hepatocyte donors were garnered based on availability of sufficient viable
cell quantities for assay demands. Donors with known obesity, alcohol use, or liver disease
were excluded; availability limitations precluded matching for more general potential variables
such as gender or age (Table S1). To test ability of the OPLSR model to make accurate
predictions of hepatic cytotoxicity cell death responses to across human hepatocyte donors, we
collected a second CSR hepatic cytotoxicity data compendium (in cells from donor #2)
containing drug/cytokine co-treatments that were both present in the CSR from donor #1 and
new (Fig. 4A). In the second CSR, human hepatocytes were treated with 14 different
combinations of seven drug conditions (two hepatotoxicants used in initial compendium, four
hepatotoxicants not used in the initial compendium, and a DMSO control) and two cytokine
conditions (no cytokine and the three-cytokine/LPS mix). This second CSR focused on six
phosphoprotein signals (p-MEK1, p-ERK1/2, p-Akt, p-p70 S6K, p-p38, and p-HSP27) from
the four ‘network gauge’ pathways (Fig. 4A), allowing direct evaluation of reduced six-
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phosphoprotein OPLSR model generated from the first CSR data compendium. We note that
human donor variation is evident in the widespread differences observed in both
phosphoprotein activation and cell death observed between donors #1 and #2 in response to
the same drug/cytokine co-treatments (Fig. S6).

An OPLSR model trained on data from these six phosphoproteins from donor #1 was evaluated
for its ability to make cell death predictions based on signaling data in donor #2 (Fig. 5A). The
six-phosphoprotein model produced good quantitative predictions of new donor cell death
responses for test data on treatments present in the training compendium. Predictions for the
yet more stringent challenge of new donor cell death test data on treatments not present in the
training compendium were gratifyingly accurate for some of the novel conditions
(chlorpromazine ± cytokine mix) though less so for other of the novel conditions. These results
demonstrate that the six-phosphoprotein OPLSR model can generate successful a priori
predictions of drug/cytokine responses across different human hepatocyte donors for
conditions present in the training data set and even for some conditions beyond. For some of
the drugs (e.g., clomipramine, riluzole) that were not present in the training set, it is likely that
other signaling pathways play a more substantial role in regulating responses drug/cytokine
co-stimulation as these drugs induced cell death without significant activation of the four
‘network gauge’ signaling pathways compared to control treatments (Fig. 4A). We thus expect
that building a broader training compendium and a network gauge model including even just
a few more signaling pathways could further widen the scope of successful a priori prediction.

The ability of our ‘network gauge’ modeling approach to predict hepatic cytotoxicity signaling-
response relationships across human hepatocyte donors for similar drug/cytokine conditions
suggests that hepatocytes from multiple human donors share a ‘common effector processing’
function26. In cells from two different human donors, particular drug/cytokine treatment
conditions (e.g. clarithromycin ± cytokine mix) elicited significantly different signaling
network activation profiles and induced different levels of cell death (Fig. S6), but the OPLSR
model nonetheless quantitatively captured their common signal-response relationship (Fig.
5A-B).

Multi-pathway OPLSR model accurately predicts experimental observations that MEK and
p38 kinase inhibitors antagonize drug- and cytokine-induced hepatic cytotoxicity

The initial 17-phosphoprotein OPLSR model suggested that sustained activation of both the
MEK–ERK and p38–HSP27 signaling pathways positively contributes to drug- and cytokine-
induced hepatocellular death. Whereas the p38–HSP27 pathway is generally considered pro-
apoptotic, due to transcriptional regulation of effector caspases33, the MEK–ERK pathway has
been considered generally pro-survival in hepatocytes through activation of anti-apoptotic
effectors such as Bad34 (Fig. S7). To test this complementary set of expected (p38) and
surprising (ERK) predictions, MEK and p38 inhibitors were selected from panel of candidate
small molecules for their ability to potently inhibit signaling while themselves inducing
minimal toxicity in human hepatocytes (from donor #3; Fig. S8). The selected MEK (U0126
and PD325901) and p38 (PHA-666859 and PHA-818637) inhibitors were used to evaluate
(both through model-prediction and experiment) the control of MEK–ERK and p38–HSP27
signaling pathways in drug- and/or cytokine-induced hepatic cytotoxicity.

First, we tested the ability of the six-phosphoprotein OPLSR model to predict effects of MEK
and p38 kinase inhibitor on drug/cytokine-induced hepatic cytotoxicity. We reasoned that a
most practically implementable challenge would be to predict effects on new donor hepatocytes
from a model constructed on a previously-generated database from other human hepatocyte
donors using previously-measured signaling inhibition efficacies. That is, given the ‘common
effector processing’ paradigm, a conceivable application could be to use a signal-response
model established across multiple previous subjects to predict a priori expected effects of
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interventions on a newly-arising subject. Accordingly, we calculated signaling time-courses
for the DMSO ± three-cytokine/LPS mix and the hepatotoxicant nortriptyline ± cytokine mix
conditions using uninhibited signaling data from all conditions examined in donors #1 and/or
#2 in concert with data for MEK and p38 inhibitors from donor #3 (Fig. S8). This calculation
entailed decreasing the phosphoprotein levels of both the inhibitor's targeted kinase (e.g. p-
p38) and its downstream substrate (e.g. p-HSP27) by the experimentally-determined
proportions (e.g. 93% decrease for the p38 inhibitor PHA-666859; see Supplementary
Experimental Methods). Since these drug/cytokine ± inhibitor conditions produced very low
levels of cell death (Fig. 6 and Fig. S9), we logarithmically scaled the response data to remove
regression bias towards high-response conditions (see Fig. S9A-B).

Using a log-scale OPLSR model trained on CSR data from donors #1 and #2, we predicted the
cell death responses to multiple MEK and p38 inhibitors based on the signaling time-course
perturbation method described above (Fig. 6A,C). As expected, the model predicted significant
decreases in hepatic cytotoxicity induced by cytokine mix-only and nortriptyline + cytokine
mix treatments upon MEK or p38 kinase inhibitor pre-treatment. In human hepatocytes (from
donor #4) treated with cytokine mix-only or the idiosyncratic hepatotoxicant nortriptyline +
cytokine mix, one or both of MEK and p38 kinase inhibitors reduced the observed
hepatotoxicities (LDH release at t = 48 hr; Fig. 6B,D). MEK or p38 inhibition did not perturb
hepatic cytotoxicity in DMSO control or nortriptyline only conditions (Fig. S9C-D).
Quantitative accuracy of the model predictions (based on data from donors #1-3) was assessed
by comparing to these experimental observations in donor #4 (Fig. S9). The log-scaled OPLSR
model demonstrated promising model fitness for the training data (R2 = 0.79), but
unsatisfactory predictions of the inhibitor test data (R2 = 0.08). However, using a Pearson
correlation metric, the model generated well-correlated predictions of both training (R = 0.90)
and inhibitor test (R = 0.63) data. Importantly, the model correctly predicted the experimentally
observed pro-survival effects of MEK and p38 inhibition under these treatment conditions,
confirming that both MEK–ERK and p38–HSP27 signaling indeed both contribute positively
to the induction of hepatocellular death by drug/cytokine co-treatment. Moreover, this
demonstrates that the reduced six-phosphoprotein OPLSR model is capable of at least
qualitatively correct predictions of kinase inhibitor perturbations to drug/cytokine hepatic
cytotoxicity in a practically implementable protocol.

Discussion
To date, systems-level analyses of drug-associated hepatotoxicity have largely focused on gene
expression35 or metabonomic36 data. Our new work here demonstrates the utility of a systems
modeling approach for predicting hepatic cytotoxicity in human hepatocytes based on
phosphoprotein signaling data. Using orthogonal partial least-squares regression modeling of
multi-pathway phosphoprotein data, we showed that four key signaling pathways are
instrumental to the cooperative induction of hepatocellular death by hepatotoxicants and
physiologically relevant inflammatory cytokine co-stimuli. This informative subset contained
two pathways (Akt and p70 S6K) with model-assigned pro-survival functions, in agreement
with their accepted survival signaling roles19, 37 and two pathways (MEK–ERK and p38–
HSP27) with model-assigned pro-death functions. These four model-identified signaling
pathways represent a useful ‘network gauge’25 capturing the balance between pro-survival
and pro-death signaling in drug- and cytokine-stimulated hepatocytes (Fig. S5). Thus, we
propose that this kind of hepatic cytotoxicity may be understood in terms of a signaling network
state, in which the integrated behavior of multiple pathways characterizes the effects of a
candidate drug in the context of diverse, physiologically relevant co-stimuli (Fig. 7).

Though p38 and JNK signaling pathways have been individually identified as critical regulators
of liver injury associated with the hepatotoxicants ranitidine11, 16, 18 and acetaminophen38,
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respectively, this work demonstrates that, for diverse hepatotoxicant and cytokine co-
stimulatory conditions, specification of hepatic cytotoxicity responses depends on the pro-
survival and pro-death signaling contributions from the Akt, p70 S6K, MEK–ERK, and p38–
HSP27 pathways. It is likely that other cytokine signaling pathways, including IKK–NF-κB
and JNK, are indeed critical to inflammation-associated idiosyncratic drug hepatotoxicity, but
they may be more associated with regulation of the inflammatory response in cells other than
hepatocytes and/or are crucial for mechanisms of toxicity not shared by the hepatotoxicants in
this study. We note that the MEK-ERK and p38-HSP27 pathways highlighted by our present
work may influence a variety of downstream effector mechanisms involved in potentially
diverse observed hepatocyte injury behaviors5. Future investigation into the mechanisms
connecting drug-induced hepatocellular injuries and kinase signaling activation should lead to
improved prediction and understanding of inflammatory cytokine-associated idiosyncratic
drug hepatic cytotoxicity.

We submit that our findings here motivates complementary future studies -- perhaps using
lower drug and cytokine concentrations -- focused on how hepatocyte signaling networks
govern sub-lethal hepatic toxicity phenotypes (such as mitochondrial and drug transporter
dysfunction22, 39) measureable in high-throughput cell culture that underlie chronic liver
toxicity. Moreover, this type of patient-specific data-driven toxicity modeling could be
implemented to generate personalized predictions of idiosyncratic hepatotoxicity based on
well-trained, multi-donor in vitro signaling-hepatic toxicity models that are further
supplemented by focused in vitro studies on patient-specific hepatocytes using patient-tailored
drug doses and cytokine levels.

Our data-driven modeling analysis indicated that the MEK–ERK and p38–HSP27 pathways
are activated in more sustained manner by hepatotoxic drug and/or cytokine treatments to
positively regulate the resulting cell death response. These predicted pro-death signaling
contributions were confirmed using small molecule MEK and p38 kinase inhibitors to perturb
the cooperative hepatic cytotoxicity induced by nortriptyline and a cytokine mix. While in
agreement with the generally appreciated apoptotic signaling role of p38 signaling33, this result
is surprisingly counter to the general view of MEK–ERK contributing to survival
signaling32, 34. One conceivable mechanism for the surprisingly similar pro-death
consequences of MEK–ERK and p38–HSP27 pathway activation is induction of the cellular
metalloproteinase TACE. Activated ERK40 and p3816 can both positively regulate TACE
activity and its proteolytic release of TNF41. TNF is a crucial pro-death cytokine in
inflammation-induced drug hepatotoxicity in vivo10, 11, where its TACE-regulated release by
Kupffer cells is p38-dependent16, 18, and in our in vitro drug/cytokine co-treatment system5.
We speculate that sustained ERK and p38 activation by the initial drug/cytokine stimuli may
lead to enhanced hepatocyte TNF production and autocrine signaling, which could lead to
further pro-death signaling (for example, through prolonged p38 activation; see Fig. 4F). This
potential mechanism merits dedicated study in future work.

Experimental
Human hepatocyte cell culture and stimulation

Primary human hepatocytes were obtained from CellzDirect (Durham, NC). Human
hepatocytes from multiple donors were used in this study, and donor identification is noted for
each data set. Donor information is provided in Table S1. Human hepatocytes were seeded on
collagen-coated 12- or 96-well plates (BD Biosciences, Franklin Lakes, NJ) at 1.5×105 cells/
cm2 in medium containing 5% FBS (Hyclone, Logan, UT) and 5 μg/ml insulin (Sigma, St.
Louis, MO), and, one day post-seeding, were overlayed with 0.25 mg/ml Matrigel (BD
Biosciences) in medium containing insulin but not FBS, as described previously5. One day
following Matrigel overlay, fresh culture medium containing insulin but not FBS was added.
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For kinase inhibition studies, this medium contained inhibitors at 2× final concentration; one
hour later, an equal volume of medium containing drugs and/or cytokines at 2× final
concentration was added. All drugs were suspended in 0.25% final DMSO. Drugs with
associated idiosyncratic hepatotoxicity and corresponding ‘comparison’ compounds were
dosed at a 100*Cmax concentration, a therapeutically appropriate dosing level (see
Supplementary Experimental Methods). Recombinant human cytokines were obtained from
R&D Systems (Minneapolis, MN) and were used at the following final concentrations: 100
ng/ml TNF, 20 ng/ml IL-1α, and 20 ng/ml IL-6. LPS serotype 1 from E. coli 0111:B4 (Sigma)
was used at 10 μg/ml. The MEK inhibitors PD98059, U0126, and MEK inhibitor-1 (MEKi-1)
and the p38 inhibitors SB202190 and SB203580 were obtained from EMD Biosciences (San
Diego, CA). The MEK inhibitor PD325901 and p38 inhibitors PHA-666859 and PHA-818637
were obtained from Pfizer's chemical sample bank (Groton, CT). All inhibitors were suspended
in 0.1% final DMSO. See Supplementary Experimental Methods for details on selection of
inhibitor concentrations.

Multiplexed phosphoprotein assays
Cell lysates were collected at 0, 20 min, 4, 24, and 48 hr following drug/cytokine stimulation,
clarified, and normalized using a bicinchonicic assay (Pierce). Bio-Plex bead-based assays
(Bio-Rad, Hercules, CA) were conducted using a Luminex 200 instrument (Austin, TX),
according to manufacturer's instructions, to quantify the following 17 phosphoproteins in cell
lysates: p-Akt (Ser473), p-CREB (Ser133), p-c-Jun (Ser63), p-GSK-3α/β (Ser21/Ser9), p-IκB-α
(Ser32/Ser36), p-IRS-1 (Ser636/Ser639), p-ERK1/2 (Thr202/Tyr204, Thr185/Tyr187), p-Histone
H3 (Ser10), p-HSP27 (Ser78), p-JNK (Thr183/Tyr185), p-MEK1 (Ser217/Ser221), p-STAT3
(Ser727), p-STAT6 (Tyr641), p-p38 (Thr180/Tyr182), p-p53 (Ser15), p-p70 S6 kinase (Thr421/
Ser424), and p-p90 RSK (Thr359/Ser363). Phosphoprotein assays were validated for high
specificity to known activating conditions (Fig. S1). See Supplementary Experimental
Methods for additional details.

Lactate dehydrogenase cell death assay
At 20 min, 4, 24, and 48 hr post-stimulation, conditioned medium samples were collected to
assay lactate dehydrogenase (LDH) release using a CytoTox-ONE Homogeneous Membrane
Integrity Assay (Promega, Madison, WI) according to manufacturer's recommendations.

Orthogonal partial least-squares modeling of cue-signal-response data compendia
‘Cue-signal-response’ (CSR) data compendia containing phosphoprotein time-course (t = 0-48
hr) and LDH release end-point (t = 48 hr) data were constructed separately for each human
hepatocyte donor. Phosphoprotein data were fold-change normalized to untreated samples (at
0 min) for each phosphoprotein assay and separately for each hepatocyte donor. LDH release
data were fold-change normalized to untreated samples at 48 hr post-stimulation separately for
each hepatocyte donor. These normalized data are available in Supplementary Data. CSR data
compendia normalization and fusion was performed using the DataRail toolbox43 for Matlab
(The Mathworks, Inc., Natick, MA). For each phosphoprotein signaling time-course, two time-
dependent signaling metrics13 were extracted: (i) integral for the entire time-course, and (ii)
the average of the late time-points (4-48 hr), reflecting the steady-state signaling level. These
were added to the four time-points (20 min, 4, 24, and 48 hr) to yield six signaling metrics for
each assayed phosphoprotein. For each compendium, the signaling metrics from all measured
phosphoproteins were then fused into a signaling network data matrix (X), and the toxicity
response data were cast into a vector (Y), with both X and Y arrayed across all treatment
conditions.

The relationship between the signaling data matrix (X) and the toxicity response vector (Y)
was modeled using partial least-squares regression (PLSR). Briefly, we implemented PLSR
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using the NIPALS algorithm in SIMCA-P software (Umetrics, Inc., Kinnelon, NJ) following
standard methods13, 25, 26, 28-30, 44, with some modifications. Data matrices and vectors
were mean-centered and unit-variance scaled. All models were generated using four principal
components under standard optimization criteria30. Model calibration was conducted using
leave-one-out cross-validation, and model uncertainties were calculated by jack-knifing42.
Calibrated models were subjected to a principal-component space linear transformation by
rotating the projection of the single cell death response variable completely into the first
principal-component, yielding an orthogonal PLSR (OPLSR) model45 (see Fig. S2), to allow
for simplified interpretation of model loadings and scores. Model loadings were calculated
using the mean-centered regression coefficients wa*ca from the a-th OPLSR principal-
component13. The information content of each signaling metric was assessed by its variable
importance of projection (VIP) score, which captures the loss in model fitness upon removal
of the individual signaling metric28, 30, 31. The accuracy of model predictions for both training
and test data were assessed using a model fitness parameter28, 29 (R2) and Pearson correlation
coefficient25 (R). See Supplementary Experimental Methods for additional details.

Statistical analysis
For comparing two means, a Student's t test was used. All tests were performed at a significance
level of α = 0.05.

Statement for Graphical Abstract

Certain pharmaceutical compounds exhibit rare hepatocyte toxicities in humans that may
be dependent on coincident inflammatory cytokine signaling but are poorly understood
mechanistically. We employ a systems biology approach to identify a set of four kinase
signaling pathways that govern these toxicities across human hepatocyte donors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

Akt serine-threonine protein kinase B/Akt

ASP aspirin

BUS buspirone

CHL chlorpromazine

CIM cimetidine

CLA clarithromycin

CLO clomipramine

Cmax average plasma maximum drug concentration
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CSR cue-signal-response

DMSO dimethyl sulfoxide

ERK extracellular signal-regulated kinase

FBS fetal bovine serum

GSH glutathione

HSP27 heat shock protein 27

IFN-γ interferon-γ

IKK inhibitor of nuclear factor-κB kinase

IL-1α interleukin-1α

IL-6 interleukin-6

JNK c-Jun N-terminal kinase

LDH lactate dehydrogenase

LEV levofloxacin

LPS lipopolysaccharide

MEK MAPK-ERK kinase

mTOR mammalian target of rapamycin

NEF nefazodone

NF-κB nuclear factor-κB

NIM nimesulide

NIPALS non-linear iterative partial least-squares

NOR nortriptyline

OPLSR orthogonal partial least-squares regression

p38 p38 mitogen-activated protein kinase

p70 S6K p70 S6 protein kinase

PC principal component

PI3K phosphoinositide 3-kinase

RAN ranitidine

RIL riluzole

ROS reactive oxygen species

TACE tumor necrosis factor-α-converting enzyme

TEL telithromycin

TNF tumor necrosis factor-α

TRO trovafloxacin

VIP variable-importance-of-projection
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Figure 1.
A schematic of the drug- and cytokine-induced hepatocellular death signaling network, curated
from literature references6-14, 19-21. Inflammatory cytokines bind to their cognate receptors
and activate shared downstream phosphoprotein signaling pathways regulating cell death.
Hepatotoxic drugs (hepatotoxicants) lead to various cellular stresses (e.g. ROS accumulation)
that are integrated into stress-related phosphoprotein signaling (e.g. JNK pathway) and
mitochondrial control of apoptosis. Phosphoproteins and cell death phenotypes experimentally
assayed in this study are indicated.
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Figure 2.
A cue-signal-response (CSR) drug/cytokine-induced hepatic cytotoxicity data compendium
for model training. Cultured primary human hepatocytes (donor #1) were treated with 66
combinations of 11 ‘drug’ conditions (six idiosyncratic hepatotoxicants, four corresponding
‘comparison’ compounds, and a DMSO control) and six ‘cytokine’ conditions (no cytokine,
20 ng/ml IL-1α, 10 μg/ml LPS, 100 ng/ml TNF, 20 ng/ml IL-6, and a mix containing all three
cytokines plus LPS). All drugs were dosed at 100*Cmax concentrations (see Experimental):
1.5 mM cimetidine (CIM), 142 μM ranitidine (RAN), 1.6 mM levofloxacin (LEV), 770 μM
trovafloxacin (TRO), 0.46 μM buspirone (BUS), 86 μM nefazodone (NEF), 552 μM aspirin
(ASP), 2.1 mM nimesulide (NIM), 334 μM clarithromycin (CLA), and 277 μM telithromycin
(TEL). Idiosyncratic hepatotoxicants (red font) and corresponding ‘comparison’ compounds
are presented in vertical juxtaposition. Seventeen phosphoproteins (left) and LDH release
(right) were quantitatively assayed at both early (0 and 20 minutes) and delayed time-points
(4, 24, and 48 hours) following drug and/or cytokine stimulation. Phosphoprotein levels were
fold-change normalized to untreated samples at 0 minutes and are plotted on a log2-scaled
colormap to capture both up- and down-regulated signaling levels. LDH release levels were
fold-change normalized to untreated samples at 48 hours post-stimulation and are plotted on
a linearly scaled colormap. Single biological replicates were used for both phosphoprotein and
LDH assays.
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Figure 3.
OPLSR modeling identifies key molecular signals regulating drug/cytokine-induced hepatic
cytotoxicity. An OPLSR model was trained on the 66-condition CSR data compendium from
human hepatocyte donor #1 to relate the 102 time-dependent phosphoprotein signaling metrics
(17 phosphoproteins × 6 metrics) to the cell death measurement (LDH release at t = 48 hr).
(A) A correlation plot relating the observed and OPLSR model-predicted LDH release
responses for all 66 drug/cytokine co-treatment conditions for the 17-phosphoprotein and a
reduced 4-phosphoprotein (p-ERK1/2, p-Akt, p-p70 S6K, and p-HSP27) model both
demonstrate good model fitness (R2)28, 29. (B-C) OPLSR model loadings and VIP scores from
the 17-phosphoprotein model. Positive loadings contribute to and negative loadings antagonize
the model's cell death prediction. VIP scores identify the relative importance of individual
phosphoprotein signaling metrics, with the threshold value of 1 for informative VIP scores28,
31 used as the lower-limit of the color scale in (B) and is plotted in (C). In (D), VIP scores from
individual metrics and averages for each phosphoprotein signal are plotted, with the 20-min
metrics were omitted, as these metrics were uniformly uninformative. (D) Model fitness
sensitivity to the removal of phosphoprotein signaling metrics. Model complexity was reduced
using: (i) step-wise removal of the lowest average VIP phosphoprotein; (ii) by selecting four
(p-ERK1/2, p-Akt, p-p70 S6K, and p-HSP27) or six (those four plus p-MEK1 and p-p38)
phosphoproteins; or (iii) using an equivalent number of signaling metrics as the four- and six-
phosphoprotein models (24 and 36 metrics, respectively) but selected from the top VIP scores
across all phosphoprotein metrics.
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Figure 4.
A CSR drug/cytokine-induced hepatic cytotoxicity data compendium for model training. (A)
Cultured primary human hepatocytes (donor #2) were treated with 14 combinations of seven
‘drug’ conditions (two idiosyncratic hepatotoxicants used in initial compendium, four
idiosyncratic hepatotoxicants not used in the initial compendium, and a DMSO control) and
two ‘cytokine’ conditions (no cytokine and the three-cytokine/LPS mix). Idiosyncratic
hepatotoxicants (red font) were dosed at 100*Cmax concentrations: 770 μM trovafloxacin
(TRO), 334 μM clarithromycin (CLA), 111 μM chlorpromazine (CHL), 10 μM nortriptyline
(NOR), 13 μM clomipramine (CLO), and 107 μM riluzole (RIL). Six phosphoproteins (p-
MEK1, p-ERK1/2, p-Akt, p-70 S6K, p-p38, p-HSP27) and LDH release were assayed at both
early (0 and 20 min) and delayed time-points (4, 24, and 48 hr) following stimulation. Some
conditions were also assayed at 1 and 12 hr post-stimulation (see (C-F)). Biological triplicates
were used for both phosphoprotein and LDH assays. Phosphoprotein and LDH release levels
were normalized and plotted as in Fig. 2. (B) Trovafloxacin, but not clarithromycin, synergizes
with cytokine mix co-treatment to induce hepatic cytotoxicity. Differences between drug/
cytokine co-treatment and either drug-only or cytokine mix-only conditions are labeled (*) if
P < 0.05 by a Student's t test. (C-F) Phosphoprotein signaling time-courses for idiosyncratic
drug (TRO or CLA) and/or cytokine mix treatment demonstrate sustained p-ERK1/2 (C) and
p-HSP27 (F) activation and late p-Akt (D) and p-p70 S6K (E) down-regulation under
hepatotoxic conditions compared to cytokine mix-only controls. In (C-F), DMSO-only control
treatments are not shown but are in (A). In (B-F), data is presented as mean ± s.e.m. of three
biological replicates.
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Figure 5.
OPLSR model testing on CSR drug/cytokine-induced hepatic cytotoxicity data compendia in
different human hepatocyte donors. An OPLSR model accurately predicts cell death responses
across human hepatocyte donors for drug/cytokine treatments present in the training data
compendium, even though donor-specific signaling network activation profiles and cell death
responses were observed. (A) An OPLSR model of LDH release was trained on the time-
dependent signaling metrics from six phosphoproteins (p-MEK1, p-ERK1/2, p-Akt, p-70 S6K,
p-p38, p-HSP27) using data from donor #1. This trained model was used to predict LDH release
responses based on the same signaling metrics measured in hepatocytes from donor #2. A
correlation plot relating the observed and predicted LDH release responses for the both training
data (donor #1) and the test data (donor #2), which contained six treatments present and eight
treatments not present in the training data. Test conditions (CHL ± cytokine mix) not present
in the training data but nonetheless predicted accurately are noted. The model-predicted
responses are presented as the mean prediction ± cross-validation standard error, calculated by
jack-knifing42. The test data is presented as mean ± s.e.m. of three biological replicates.
Experimental and prediction uncertainties are not shown for the training data. (B) The
predictive accuracy of this OPLSR model suggests that a ‘common effector processing’
mechanism (f(x) = y), encompassing the integration of multiple signaling pathways (x) yields
quantitatively concerted cell death responses (y), exists and is shared between hepatocytes from
different human donors given similar drug/cytokine treatments. The inset tabulates model
fitness (R2) and Pearson correlation coefficient (R) values for the model predictions of these
shared conditions. See Fig. S6 for expanded line plots comparing the phosphoprotein and LDH
release data in donors #1 and #2.
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Figure 6.
Kinase inhibitor perturbation of MEK and p38 signaling confirms their model-predicted pro-
death signaling regulation of drug/cytokine-induced hepatic cytotoxicity. (A,C) OPLSR model
predictions of the effects of MEK and p38 inhibitors in perturbing drug/cytokine-induced
hepatic cytotoxicity. To make predictions of the effects of kinase inhibitor perturbation on
hepatocellular death responses, uninhibited signaling time-courses measured in cells from
donors #1 and/or #2 were ‘computationally inhibited’ based on inhibitor activities measured
in cells from donor # 3 (Fig. S8). An OPLSR model trained on data from donors #1 and #2
was used to make cell death response predictions from these ‘computationally inhibited’ time-
courses (Fig. S9A-B). Model predictions are presented as the mean ± cross-validation standard
error, calculated by jack-knifing42. (B,D) Experimental inhibition of MEK and p38 kinase
activities demonstrates their pro-death regulation of cytokine mix- and nortriptyline (NOR) +
cytokine mix-induced hepatic cytotoxicity. Cultured human hepatocytes (donor #4) were
treated with DMSO control (B) or 10 μM nortriptyline (D) ± a three-cytokine/LPS mix and
were assayed for LDH release 48 hr post-treatment. Cells were pretreated with a MEK inhibitor
(10 μM U0126 or 1 μM PD325901) or a p38 inhibitor (1 μM PHA-666859 or 1 nM
PHA-818637) one hour before stimulation. Data are presented as the mean ± s.e.m. of eight
biological replicates. Kinase inhibition did not significantly perturb cell death responses in the
absence of cytokine mix treatment (Fig. S9C-D). In (A) to (D), differences between to control
and inhibitor conditions are labeled as significant (*) if P < 0.05 by a Student's t test.

Cosgrove et al. Page 19

Mol Biosyst. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Inflammatory cytokine-associated idiosyncratic drug hepatic cytotoxicity as a ‘network
toxicity’. The multi-pathway modeling approach presented here suggests that an integration
of the activities of multiple intracellular signaling pathways -- namely ERK, Akt, p70 S6K,
and p38 -- is necessary for hepatocytes to fully specify death responses to hepatotoxic drug/
cytokine co-treatment conditions. This provides motivation of the network-level consideration
of multiple survival, stress, and apoptosis signaling pathways in evaluating the hepatic
cytotoxicity mechanisms of context-dependent hepatotoxic drugs.
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