26 research outputs found

    Variability in the South Atlantic Anticyclone and the Atlantic Niño mode

    Get PDF
    Sea surface temperature (SST) anomalies in the eastern equatorial Atlantic are connected to modulations in the strength of the South Atlantic subtropical high-pressure system, referred to as the South Atlantic Anticyclone (SAA). Using ocean and atmosphere reanalysis products we show here that the strength of the SAA from February to May impacts the timing of the cold tongue onset and the intensity of its development in the eastern equatorial Atlantic (EEA) via anomalous tropical wind power. This modulation of the timing and amplitude of the seasonal cold tongue development manifests as anomalous SST events peaking between June and August. The timing and impact of this connection is not completely symmetric for warm and cold events. For cold events, an anomalously strong SAA in February and March leads to positive wind power anomalies from February to June resulting in an early cold tongue onset and subsequent cold SST anomalies in June and July. For warm events the anomalously weak SAA persists until May, generating negative wind power anomalies that lead to a late cold tongue onset as well as a suppression of the cold tongue development and associated warm SST anomalies. Mechanisms by which SAA induced wind power variations south of the equator influence EEA SST are discussed, including ocean adjustment via Rossby and Kelvin wave propagation, meridional advection, and local intraseasonal wind variation

    Seasonality in the relationship between equatorial-mean heat content and interannual eastern equatorial Atlantic sea surface temperature variability

    Get PDF
    Interannual sea surface temperature (SST) variations in the tropical Atlantic Ocean lead to anomalous atmospheric circulation and precipitation patterns with important ecological and socioeconomic consequences for the semiarid regions of sub-Saharan Africa and northeast Brazil. This interannual SST variability is characterized by three modes: an Atlantic meridional mode featuring an anomalous cross-equatorial SST gradient that peaks in boreal spring; an Atlantic zonal mode (Atlantic Nino mode) with SST anomalies in the eastern equatorial Atlantic cold tongue region that peaks in boreal summer; and a second zonal mode of variability with eastern equatorial SST anomalies peaking in boreal winter. Here we investigate the extent to which there is any seasonality in the relationship between equatorial warm water recharge and the development of eastern equatorial Atlantic SST anomalies. Seasonally stratified cross-correlation analysis between eastern equatorial Atlantic SST anomalies and equatorial heat content anomalies (evaluated using warm water volume and sea surface height) indicate that while equatorial heat content changes do occasionally play a role in the development of boreal summer Atlantic zonal mode events, they contribute more consistently to Atlantic Nino II, boreal winter events. Event and composite analysis of ocean adjustment with a shallow water model suggest that the warm water volume anomalies originate mainly from the off-equatorial northwestern Atlantic, in agreement with previous studies linking them to anomalous wind stress curl associated with the Atlantic meridional mode

    The impact of Southern Ocean topographic barriers on the ocean circulation and the overlying atmosphere

    Get PDF
    Southern Ocean bathymetry constrains the path of the Antarctic Circumpolar Current (ACC), but the bathymetric influence on the coupled ocean–atmosphere system is poorly understood. Here, we investigate this impact by respectively flattening large topographic barriers around the Kerguelen Plateau, Campbell Plateau, Mid-Atlantic Ridge, and Drake Passage in four simulations in a coupled climate model. The barriers impact both the wind and buoyancy forcing of the ACC transport, which increases by between 4% and 14% when barriers are removed individually and by 56% when all barriers are removed simultaneously. The removal of Kerguelen Plateau bathymetry increases convection south of the plateau and the removal of Drake Passage bathymetry reduces convection upstream in the Ross Sea. When the barriers are removed, zonal flattening of the currents leads to sea surface temperature (SST) anomalies that strongly correlate to precipitation anomalies, with correlation coefficients ranging between r = 0.92 and r = 0.97 in the four experiments. The SST anomalies correlate to the surface winds too in some locations. However, they also generate circumpolar waves of sea level pressure (SLP) anomalies, which induce remote wind speed changes that are unconnected to the underlying SST field. The meridional variability in the wind stress curl contours over the Mid-Atlantic Ridge, the Kerguelen Plateau, and the Campbell Plateau disappears when these barriers are removed, confirming the impact of bathymetry on surface winds. However, bathymetry-induced wind changes are too small to affect the overall wave-3 asymmetry in the Southern Hemisphere westerlies. Removal of Southern Hemisphere orography is also inconsequential to the wave-3 pattern

    Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene

    Get PDF
    Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (∌57 to 48 million years ago) span a wide range (∌9 to 23 ∘C higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimental framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (∌57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different methodologies, we find that the average GMST estimate (66 % confidence) during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to 28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and 27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimates from the EECO are ∌10 to 16 ∘C warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14 ∘C higher than pre-industrial). Leveraging the large “signal” associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that “bulk” equilibrium climate sensitivity (ECS; 66 % confidence) during the latest Paleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C), 3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to 4.4 ∘C) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5 ∘C per doubling CO2) but appear incompatible with low ECS values (<1.5 per doubling CO2)

    Global and Zonal-Mean Hydrological Response to Early Eocene Warmth

    Get PDF
    Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet-gets-wetter, dry-gets-drier” response anticipated over the ocean. Subtropical regions (∌15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data-modeling approach to reconstruct global and zonal-mean rainfall patterns during the early Eocene (∌56–48 million years ago). The Deep-Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid- (30°–60°N/S) and high-latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter-Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation-evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter-model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy-derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation-induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns

    Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble

    Get PDF
    The mid-Pliocene (∌3 Ma) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures, and it is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (due to the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. Note that the dynamic effect plays a more important role than the thermodynamic effect in regional precipitation minus evaporation (PmE) changes (i.e., northward ITCZ shift and wetter northern Indian Ocean). The thermodynamic effect is offset to some extent by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth's energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1∘ northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate

    A stronger versus weaker Walker: understanding model differences in fast and slow tropical Pacific responses to global warming

    No full text
    International audienceThe tropical Pacific response to radiative forcing remains uncertain as projected future changes to the Walker circulation and SST patterns vary substantially among climate models. Here, we study what sets the magnitude and timescales of the response and why they differ across models. Specifically, we compare the fast and slow responses of the tropical Pacific to abrupt CO2 increases (2, 4, 8, 16 × CO2) in two configurations of the same model family (CESM) that differ in horizontal resolution and mean biases. We find that the model with a higher resolution shows a transient ocean thermostat-like response to CO2-forcing, with a stronger Walker cell and lack of warming in the eastern Pacific trade wind belts. This fast response lasts for about 50 years and is followed by a slight Walker cell weakening and equatorial warming. The second model, with a coarser resolution, shows a weak and short-lasting ocean thermostat response, followed by pronounced Walker cell weakening and eastern equatorial Pacific warming, similar to the long-term pattern noted in previous studies. These fast and slow responses also manifest in experiments where CO2 is gradually increased. We relate the magnitude of the fast ocean-thermostat response to the structure of the equatorial thermocline, setting the strength of the Bjerknes feedback. The magnitude and timing of the delayed eastern equatorial Pacific warming are related to the competition of positive feedbacks amplifying the ocean thermostat against the effect of ocean subsurface warming eroding the thermostat. The latter effect is further amplified by the slowdown of oceanic subtropical cells and enhanced extra-tropical warming. Different balances between these effects could explain the large spread in the model future projections for the tropical Pacific

    Time scales and mechanisms for the tropical Pacific response to global warming: a tug of war between the ocean thermostat and weaker Walker

    No full text
    International audienceDifferent oceanic and atmospheric mechanisms have been proposed to describe the response of the tropical Pacific to global warming, yet large uncertainties persist on their relative importance and potential interaction. Here, we use idealized experiments forced with a wide range of both abrupt and gradual CO2 increases in a coupled climate model (CESM) together with a simplified box model to explore the interaction between, and time scales of, different mechanisms driving Walker circulation changes. We find a robust transient response to CO2 forcing across all simulations, lasting between 20 and 100 years, depending on how abruptly the system is perturbed. This initial response is characterized by the strengthening of the Indo-Pacific zonal SST gradient and a westward shift of the Walker cell. In contrast, the equilibrium response, emerging after 50–100 years, is characterized by a warmer cold tongue, reduced zonal winds, and a weaker Walker cell. The magnitude of the equilibrium response in the fully coupled model is set primarily by enhanced extratropical warming and weaker oceanic subtropical cells, reducing the supply of cold water to equatorial upwelling. In contrast, in the slab ocean simulations, the weakening of the Walker cell is more modest and driven by differential evaporative cooling along the equator. The “weaker Walker” mechanism implied by atmospheric energetics is also observed for the midtroposphere vertical velocity, but its surface manifestation is not robust. Correctly diagnosing the balance between these transient and equilibrium responses will improve understanding of ongoing and future climate change in the tropical Pacific
    corecore