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Abstract:  26 

Accurate estimates of past global mean surface temperature (GMST) help to contextualise 27 

future climate change and are required to estimate the sensitivity of the climate system to CO2 28 

forcing during the geological record. GMST estimates from the latest Paleocene and early 29 

Eocene (~57 to 48 million years ago) span a wide range (~9 to 23°C higher than pre-industrial) 30 

and prevent an accurate assessment of climate sensitivity during this extreme greenhouse 31 

climate interval. Here, we develop a multi-method experimental framework to calculate GMST 32 

during three target intervals: 1) the latest Paleocene (~57 Ma), 2) the Paleocene-Eocene 33 

Thermal Maximum (56 Ma) and 3) the early Eocene Climatic Optimum (EECO; 49.4 to 53.3 34 

Ma). Using six independent methodologies, we find that average GMST estimates during the 35 

latest Paleocene and PETM are 11.7°C (± 0.6°C) and 18.7°C (± 0.8°C) higher than pre-36 

industrial, respectively. GMST estimates from the EECO are 13.3°C (±0.5°C) warmer than 37 

pre-industrial and comparable to previous IPCC AR5 estimates (12.7°C higher than pre-38 

industrial). Leveraging the extremely large ‘signal’ associated with these extreme warm 39 

climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM and 40 

EECO to calculate a gross estimate of the average climate sensitivity between the early 41 

Paleogene and today. This yields gross climate sensitivity estimates for the latest Paleocene, 42 

PETM and EECO which range between 2.8 to 4.8°C (66% confidence). These largely fall 43 

within the range predicted by the IPCC (1.5 to 4.5°C per doubling CO2), but appear 44 

incompatible with low values (between 1.5 and 2.8°C per doubling CO2). 45 

 46 

 47 

 48 

 49 

 50 

 51 
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1. Introduction  52 

Under high growth and low mitigation scenarios, atmospheric carbon dioxide (CO2) could 53 

exceed 1000 parts per million (ppm) by the year 2100 (Stocker et al., 2013). The long-term 54 

response of the Earth System under such elevated CO2 concentrations remains uncertain 55 

(Stevens et al., 2016;Knutti et al., 2017;Hegerl et al., 2007). One way to better constrain these 56 

climate predictions is to examine intervals in the geological past during which greenhouse gas 57 

levels were similar to those predicted under future scenarios. This is the rationale behind the 58 

Deep-time Model Intercomparison Project (DeepMIP) which aims to investigate the behaviour 59 

of the Earth System in three high CO2 climate states in the latest Paleocene and early Eocene 60 

(∼ 57–48 Ma) (Lunt et al., 2017;Hollis et al., 2019). 61 

Sea surface temperature (SST) and land air temperature (LAT) proxies indicate that 62 

the latest Paleocene and early Eocene were characterised by global mean surface 63 

temperatures (GMST) much warmer than those of today (Cramwinckel et al., 2018;Farnsworth 64 

et al., 2019;Hansen et al., 2013;Zhu et al., 2019;Caballero and Huber, 2013).  Having a robust 65 

quantitative estimate of the magnitude of warming relative to modern is useful for two primary 66 

reasons: (1) it allows us to contextualise future climate change predictions by comparing the 67 

magnitude of future anthropogenic warming with the magnitude of past natural warming; (2) 68 

combined with CO2 proxy data, it allows us to estimate climate sensitivity, a key metric for 69 

understanding how the climate system responds to CO2 forcing. The Fifth IPCC Assessment 70 

Report stated that GMST was 9°C to 14°C higher than for pre-industrial conditions during the 71 

early Eocene (~52 to 50 Ma) (Masson-Delmotte et al., 2014). Subsequent studies indicate a 72 

wider range of estimates, from 9 to 23°C warmer than pre-industrial (Cramwinckel et al., 73 

2018;Farnsworth et al., 2019;Hansen et al., 2013;Zhu et al., 2019;Caballero and Huber, 2013) 74 

(Figure 1). It is an open question whether this range arises from inconsistencies between the 75 

methods used to estimate GMST, such as selection of proxy datasets, treatment of 76 

uncertainty, and/ analysis of different time intervals. This has thwarted a robust assessment 77 

of GMST estimates for the latest Paleocene and early Eocene.  78 
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Here we calculate GMST estimates within a consistent experimental framework for the 79 

target intervals outlined by the Deep-time Model Intercomparison Project (DeepMIP): i) the 80 

Early Eocene Climatic Optimum (EECO; 53.3 to 49.4 Ma), ii) the Paleocene-Eocene Thermal 81 

Maximum (PETM, ca. 56 Ma) and iii) the latest Paleocene (LP, ca. 57-56 Ma). We use six 82 

independent methods to obtain new GMST estimates for these three time periods, employing 83 

recently compiled datasets of SST and LAT estimates (Hollis et al., 2019) and BWT estimates 84 

(Cramer et al., 2009;Westerhold et al., 2018;Barnet et al., 2019). We also undertake a suite 85 

of additional sensitivity studies to explore the influence of particular proxies on each GMST 86 

estimate. We then combine GMST estimates from all six methods to generate a “best 87 

estimate” GMST for each time slice and use these, with existing estimates of CO2 (Gutjahr et 88 

al., 2017;Anagnostou et al., 2016) to develop new estimates of ECS during the latest 89 

Paleocene, PETM and EECO. 90 

 91 

2. Methods and Materials 92 

Three different input datasets are used to calculate GMST. Dataset Dsurf consists of surface 93 

temperature estimates. Dataset Ddeep consists of deep-water temperature estimates. Dataset 94 

Dcomb consists of a combination of surface- and deep-water temperature estimates.  Six 95 

different methodologies make use of these datasets to estimate GMST.  Below we describe 96 

these datasets and methods.   97 

 98 

2.1. Dataset Dsurf 99 

Dataset Dsurf is version 0.1 of the DeepMIP database, as described in Hollis et al (2019).  It 100 

consists of SSTs and LATs for the latest Paleocene, PETM and EECO.  The SSTs are from 101 

multiple proxies, including foraminiferal δ18O, foraminiferal Mg/Ca, clumped isotopes (Δ47), 102 

and TEX86.  Foraminiferal δ18O values are calibrated to SST following Bemis et al. (1998). 103 

Foraminiferal Mg/Ca are calibrated to SST following Evans et al. (2018). TEX86 values are 104 
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calibrated to SST using BAYSPAR (Tierney and Tingley, 2014). Δ47 values are reported using 105 

the parameters and calibrations of the original publications (Evans et al., 2018;Keating-Bitonti 106 

et al., 2011). LATs are derived from leaf fossils, pollen assemblages, mammal δ18O, paleosol 107 

δ18O and branched GDGTs. LAT estimates are calculated using the parameters and 108 

calibrations of the original publication (see Hollis et al., 2019 and ref. therein). The location of 109 

the proxies is shown in Figure 2. For each site, we utilise the uncertainty range reported in 110 

Hollis et al. (2019).  We do not explore calibration uncertainty, but instead focus on the 111 

methodologies used to calculate GMST. 112 

Four methods (Dsurf-1, Dsurf-2, Dsurf-3 and Dsurf-4) are employed to calculate GMST from 113 

dataset Dsurf. These methods employ parametric (Dsurf-1, Dsurf-2, Dsurf-4) or non-parametric 114 

(Dsurf-3) functions to estimate temperature. Each method conducts a ‘baseline’ calculation 115 

which uses the SST and LAT data compiled in accordance with the DeepMIP protocols (i.e. 116 

Hollis et al., 2019). Our baseline calculation (Dsurf-default) excludes δ18O values from 117 

recrystallized planktonic foraminifera as these estimates are significantly cooler than 118 

estimates derived from the δ18O value of well-preserved foraminifera, foraminiferal Mg/Ca 119 

ratios and clumped isotope values from larger benthic foraminifera (see Hollis et al., 2019 and 120 

ref. therein). For each method, we also conduct a series of sub-sampling calculations, based 121 

on varying assumptions about the robustness of different proxies (Table 1).  The first sensitivity 122 

experiment (Dsurf-Frosty) includes δ18O values from recrystallized planktonic foraminifera. The 123 

second sensitivity experiment (Dsurf-NoTEX) removes TEX86 values as these give slightly 124 

higher SSTs than other proxies, especially in the mid-to-high latitudes (Bijl et al., 2009;Hollis 125 

et al., 2012;Inglis et al., 2015). The third sensitivity experiment (Dsurf-NoMBT) removes 126 

MBT(‘)/CBT values derived from marine sediment archives as they may suffer from a cool bias 127 

(Inglis et al., 2017;Hollis et al., 2019). The fourth sensitivity experiment (Dsurf-NoMammal) 128 

removes mammal and paleosol δ18O values as these proxies may suffer from a cool bias 129 

(Hollis et al., 2019). For each method, GMST is calculated for: i) the Early Eocene Climatic 130 
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Optimum (EECO; 53.3 to 49.4 Ma), ii) the Paleocene-Eocene Thermal Maximum (ca. 56 Ma) 131 

and iii) the latest Paleocene (LP; ca. 57-56 Ma). 132 

 133 

2.1.1. Dsurf-1  134 

Method Dsurf-1 was first employed by Caballero and Huber (2013) to estimate GMST from 135 

early Eocene surface temperature proxies in the era after pervasive recrystallization of 136 

foraminiferal δ18O values was recognized (e.g. Pearson et al., 2001;Pearson et al., 2007). This 137 

study used data compilations which were the predecessors to the DeepMIP compilation 138 

(Huber and Caballero, 2011, Hollis et al., 2012).  139 

Here, the anomalies of individual proxy temperature data points with respect to modern 140 

values at the corresponding paleolocation are first calculated. The calculation involves binning 141 

into low, mid, and high latitudes (30°N to 30°S, 30°N/S to 60°N/S, and 60°N/S to 90°N/S), and 142 

calculating the unweighted mean anomaly within these bins between the median 143 

reconstructed value at a given locality and the temperature at the same location today (from 144 

reanalysis). The geographically binned means are then weighted according to relative 145 

spherical area to calculate a globally weighted mean temperature anomaly between the paleo-146 

time slice and modern. All samples are treated equally and considered independent. The 147 

associated errors are added in quadrature with the inter-sample standard deviation. These 148 

two sources of error were combined and normalized by the square root of the number of 149 

samples. This method is intended as an unsophisticated, brute force approach to estimating 150 

GMST when dealing with many localities with poorly characterized errors in which there is a 151 

large difference between the reconstructed temperature at a given location and the modern 152 

equivalent. It is not intended to ferret out small differences in GMST nor is it expected to work 153 

well under conditions in which temperature gradients are stronger than today, continents are 154 

far removed from their current configuration, or in situations in which systematic errors are not 155 

readily mitigated by large sample size (i.e. when there are correlations in systematic errors 156 
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between proxies). It is designed to be relatively straightforward to interpret and simple to 157 

reproduce without relying overly on climate models or sophisticated statistical models.   158 

Various sanity checks are performed along the way to determine if the method is likely 159 

to produce useful results for a given sampling distribution and what corrections should be 160 

applied to optimize it. For example, if we sampled the modern temperature field using a 161 

geographic sampling distribution for a given time interval, what would the reconstructed 162 

modern temperature be? If we sampled the modern global, annual average surface 163 

temperature field in the reanalysis product ERA-5 (mean value: 15.1°C) with the geographic 164 

distribution of samples we have in the past, we obtain values of 16.9°C (±1.5°C) in the latest 165 

Paleocene, 14.2°C (±1.7°C) for the PETM, and 15.2°C (±1.1°C) for EECO at the distribution 166 

of localities. For the sampling densities and spatial structure of the latest Paleocene and early 167 

Eocene, this method can approach the true value within ~1.5°C and the error propagation 168 

adequately characterizes the error, in this 'perfect knowledge' scenario. Seeking precision 169 

beyond that range is probably unwarranted.  However, estimating the latest Paleocene and 170 

early Eocene GMST may be somewhat easier than estimating the modern GMST because 171 

temperature gradients are roughly half modern values or less, thus spatial heterogeneity is 172 

much reduced.  Indeed, in the limit of a completely flat temperature gradient, only one perfect 173 

sample would be required to estimate GSMT. 174 

We can use paleoclimate model results to characterise how well the existing 175 

palaeographic sampling network will impact results. For the latest Paleocene, the 176 

reconstructed GMST is 24.6°C (±1.3°C), compared to the true paleoclimate model mean of 177 

25.8°C. For the PETM, the reconstructed GMST is 27.2°C (±1.5°C), compared to the true 178 

paleoclimate model mean of 29.3°C. For the EECO, the reconstructed GMST is 25.3°C 179 

(±0.7°C), compared to the true paleoclimate model mean of 25.8°C.  This method produces 180 

estimates that are within random error given otherwise perfect knowledge. It is also clear that 181 

systematic errors introduced by limited paleogeographic sampling can be alleviated by 182 

incorporating the systematic offset in mean values between the true paleoclimate model 183 

GMST and the sampled paleoclimate model GMST. This is the only component in which 184 
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paleoclimate model information is included and we utilise this offset to correct for systematic 185 

errors.  While this approach could be applied uncritically, it is best applied only within the 186 

context of studying the random and systematic error structure as described above and caution 187 

should be taken in using systematic corrections that are significantly bigger than the estimated 188 

random error. 189 

The calculations shown here utilize two utilize two CESM1 simulations, as described 190 

in Cramwinckel et al., (2018; EO3 and EO4). The two cases are chosen to minimize the 191 

magnitude of the correction to GMST and the final result is not sensitivite to the choice of 192 

reference simulation among these two. The magnitude of the global correction could be 193 

sensitive to both using different models or boundary conditions.  194 

 195 

2.1.2. Dsurf-2 196 

In this method, GMST estimates are calculated using the method described in Farnsworth et 197 

al. (2019) where a transfer-function is used to calculate global mean temperature from local 198 

proxy temperatures.  The transfer function is generated from a pair of Eocene climate model 199 

simulations, carried out at two CO2 concentrations.  The first simulations are the same 2x CO2 200 

and 4x CO2 HadCM3L Eocene simulations from Farnsworth et al (2019).  The second 201 

simulations are the x 4CO2 and 8x CO2 CCSM3 simulations of Huber and Caballero (2011), 202 

also discussed in Lunt et al (2012). We then provide a final estimate based on each of our two 203 

models.  The two models are configured for the Eocene with different paleogeographies.   204 

The principal assumption of this approach is that global temperatures scale linearly 205 

with local temperatures, and that a climate model can represent this scaling correctly.  The 206 

resulting GMST estimate is independent of the climate sensitivity of the model but is 207 

dependent on the modelled spatial distribution of temperature.  For a single given proxy 208 

location with a local temperature estimate (Tproxy) we estimate global GMST (<T>inferred) as: 209 

  210 
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<T>
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

 = <𝑇𝑙𝑜𝑤> +(𝑇𝑝𝑟𝑜𝑥𝑦-𝑇𝑙𝑜𝑤)
<𝑇ℎ𝑖𝑔ℎ> - <𝑇𝑙𝑜𝑤>

𝑇ℎ𝑖𝑔ℎ - 𝑇𝑙𝑜𝑤    (1) 211 

 212 

where <Tlow> and <Thigh> are the global means of a low- and high-CO2 model simulation 213 

respectively, and Tlow and Thigh are the local temperatures (same location as the proxy) from 214 

the same simulations. Tlow and Thigh represent local modelled SSTs or local modelled near-215 

surface LATs (in contrast to Farnsworth et al. 2019 who only used local modelled near-surface 216 

LATs to calculate Tlow and Thigh, even if Tproxy was SST). If the proxy temperature is greater 217 

than Thigh or cooler than Tlow, then the inferred global mean is found by extrapolation rather 218 

than by interpolation and is therefore more uncertain (Figure 3). We repeat this process for 219 

each proxy data point (Figure 4) and take an average (± standard error) as our best estimate 220 

of global mean temperature.   221 

 222 

2.1.3. Dsurf-3  223 

For Dsurf-3, GMST estimates are calculated using Gaussian process regression (Figure 5-6; 224 

Bragg et al., Submitted). In this method, temperature is treated as an unknown function of 225 

location, f(x). There are many possible functions that can fit the available proxy dataset. By 226 

using a Gaussian process model of the unknown function, we assume that temperature is a 227 

continuous and smoothly varying function of location, and once fitted to the data, the posterior 228 

mean of the model gives the most likely function form for the temperature. We use a Gaussian 229 

process prior and update it using the proxy data to obtain the posterior model which we can 230 

then use to predict the surface temperatures on a global grid. Prior specification of the model 231 

is via a mean function E(f(x)) = m(x), and a covariance function Cov(f(x), f(x’)) =k(x,x’) (which 232 

tells us how correlated f(x) is with f(x’)). We also specify the standard deviation of the 233 

observation uncertainty about each data point (σ
2
i). If 𝒇 = (𝑓(𝑥1), … 𝑓(𝑥𝑛))

𝑇
 is a vector of 234 

temperature observations at each location 𝑥_𝑖, then the model is: 235 

 236 
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𝒇 ~𝒩(𝜇, Σ)       (2) 237 

 238 

where 𝜇𝑖 = 𝑚(𝑥𝑖) and Σ𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) + 𝕀𝑖=𝑗𝜎𝑖
2. The proxy temperatures are expressed as 239 

anomalies to the present-day zonal mean temperature at the respective paleolatitude. We 240 

subtract the mean temperature anomaly for each time period and core experiment prior to the 241 

analysis and therefore fit the model to the residuals, using a zero-mean prior function. This 242 

means the predicted field will relax towards the mean surface warming in areas of no data 243 

coverage. The covariance function – which considers the clustering of proxy locations - 244 

describes the correlation between f(xi) and f(xj) in relation to the distance of xi and xj. We use 245 

a squared-exponential covariance function with Haversine distances replacing Euclidean 246 

distances so that correlation is a function of distance on the sphere. A heteroscedastic noise 247 

model is used to weight the influence of individual proxy data by their associated uncertainty, 248 

i.e. the model will better fit reconstructions with a smaller reported error.   249 

Proxy uncertainties are taken from Hollis et al., (2019) or are set to the average of the 250 

respective proxy method where no errors were reported. Standard deviations for TEX86 and 251 

Mg/Ca records are derived from the reported 90% confidence intervals. A minimum value of 252 

2.5°C for the standard deviation is assumed for all other methods. The output variances of the 253 

covariance function are estimated using their maximum likelihood values, obtained with the 254 

GPy Python package (GPy, 2012). Note that the Gaussian process approach provides 255 

probabilistic predictions of temperature values, i.e., uncertainty estimates of the predicted 256 

field. We apply the method to the marine and terrestrial data separately and combine the 257 

masked fields afterwards in order to prevent mutual interference. The uncertainty reported for 258 

an individual GMST estimate is the standard deviation.  259 

Model uncertainty (expressed as standard deviation fields) is typically highest in areas 260 

with sparse data coverage (e.g. the Pacific Ocean and Southern Hemisphere land masses; 261 

Figure S1) and the lower uncertainty for the latest Paleocene relative to the PETM and EECO 262 

is partly related to the smaller reported uncertainties in the training data rather than enhanced 263 
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data coverage. The large spread in reconstructed terrestrial temperatures for North America 264 

during the PETM (Figure S1d) and EECO (Figure Sf) also increases uncertainties for other 265 

continental areas during both time intervals. 266 

 267 

2.1.4. Dsurf-4 268 

For Dsurf-4, GMST estimates are calculated using a simple mathematical model, tuned to best 269 

fit the proxy data: 270 

 271 

𝑇(𝜃) ≈ 𝑎 + 𝑏𝜃 + 𝑐 cos 𝜃     (3) 272 

 273 

where T(θ) is the Eocene zonal-mean temperature, and the coefficients a, b, and c are chosen 274 

to minimize the sum of the squared residuals relative to Dsurf (i.e. the SST and LAT data from 275 

Hollis et al. 2019). This model accurately represents T(θ) in the modern climate (Figure S2) 276 

when supplied with similar number of data points as are in the Hollis et al (2019) dataset, and 277 

it ensures a global solution that is consistent with the physical expectation that temperature 278 

should decrease - and the meridional gradient in temperature should increase - from the 279 

tropics toward the poles (Figure S2). 280 

For each data point, we account for three types of uncertainty (i.e. temperature, 281 

elevation, latitude). For temperature, we assume a skew-normal probability distribution based 282 

on the stated 90% confidence intervals. Where uncertainty estimates are not given, we 283 

assume a (symmetric) normal distribution with a 90% confidence interval of ±5K. For elevation, 284 

we assume a skew-normal distribution with a 90% confidence interval equal to the lowest and 285 

highest elevations of adjacent grid points in the paleotopography data set of Herold et al. 286 

(2014), with a lower bound of zero. For latitude, we assume a uniform distribution spanning 287 

the stated paleomagnetic and mantle estimates.  288 
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To estimate T(θ), we randomly sample temperature, elevation, and latitude from their 289 

respective distributions at each location (Figure S3), and apply a lapse-rate adjustment of 290 

6°K/km. Then, using a standard Monte Carlo bootstrapping method, we resample the same 291 

number of data points with replacement, and find the coefficients in Equation 3 that best fit the 292 

sub-sampled data. We repeat this procedure 10,000 times to find a probability distribution of 293 

T(θ). The uncertainty associated with an individual GMST estimate is the standard deviation. 294 

 295 

2.2. Dataset Ddeep 296 

Dataset Ddeep consists of bottom water temperatures (BWTs) for the latest Paleocene, PETM 297 

and EECO. Benthic foraminifera δ18O values for the latest Paleocene, PETM and EECO come 298 

from previous compilations (Westerhold et al., 2018;Barnet et al., 2019;Cramer et al., 2009), 299 

adjusted to Cibicidoides following established methods (Cramer et al., 2009), allowing 300 

temperature to be calculated using Eq. 9 of Marchitto et al (2014):  301 

 302 

(δcp – δsw + 0.27) = -0.245 ±0.005t + 0.0011 ±0.0002t2 + 3.58 ±0.02  (4) 303 

 304 

where t is bottom water temperature in Celsius, δcp is δ18O of CaCO3 on the PeeDee 305 

Belemnite (PDB) scale, and δsw is δ18O of seawater on the Standard Mean Ocean Water 306 

(SMOW). δsw is defined in accordance with the DeepMIP protocols (−1.00 ‰; see Hollis et al., 307 

2019).  A single method (Ddeep-1) is used to calculate GMST from Ddeep following the 308 

methodology outlined in Hansen et al. (2013). For this method, GMST is calculated for: i) the 309 

Early Eocene Climatic Optimum (EECO; 53.3 to 49.4 Ma), ii) the Paleocene-Eocene Thermal 310 

Maximum (ca. 56 Ma) and iii) the latest Paleocene (LP; ca. 57-56 Ma). 311 

 312 

2.2.1. Ddeep-1 313 
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For Ddeep-1, GMST estimates are calculated following the method of Hansen et al. (2013), 314 

which utilises only the deep ocean benthic foraminifera δ18O dataset, and we refer the reader 315 

to that study for a detailed justification of the approach. Briefly, GMST is scaled directly to 316 

deep ocean temperature before the Pliocene. Specifically, ΔGMST = ΔBWT prior to ~5.3 Ma, 317 

where early Pliocene BWT and GMST was calculated following Eq. 3.5, 3.6, and 4.2 of Hansen 318 

et al. (2013). As such, the calculations presented here differ from those of Hansen et al. (2013) 319 

only in that we use a more recent benthic δ18O compilation and a different equation to convert 320 

δ18O to temperature in the ice-free Paleogene. For each time-slice, the reported uncertainty 321 

incorporates the mean calibration uncertainty and standard deviation (1σ) in calculated BWTs.  322 

 323 

2.3. Dataset Dcomb 324 

Dataset Dcomb uses a combination of (tropical) surface- and deep-water temperature 325 

estimates. The deep ocean dataset (Ddeep) is identical to that described in Section 2.2. The 326 

tropical SST dataset utilises all relevant surface ocean proxy data from the DeepMIP 327 

database, i.e. those with a palaeolatitude in the magnetic reference frame within 30° of the 328 

equator. An expanded definition of the tropics is used as tropical SST reconstructions are 329 

relatively sparse; 30° was chosen as it retains tropical SST data from several proxies for all 330 

three intervals whilst SST seasonality remains relatively low within these latitudinal bounds.  331 

 332 

2.3.1. Dcomb-1 333 

For Dcomb-1, GMST estimates are calculated for each time interval based on the difference 334 

between tropical SSTs and deep-ocean BWTs (Evans et al., 2018), such that: 335 

 336 

𝐺𝑀𝑆𝑇 = 0.5(𝑡𝑟𝑜𝑝𝑖𝑐𝑎𝑙 𝑆𝑆𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐵𝑊𝑇̅̅ ̅̅ ̅̅ ̅)    (5) 337 

 338 
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The fundamental assumptions of this approach are that: 1) GMST can be approximated by 339 

global mean SST, 2) global mean SST is equivalent to the mean of the tropical and high 340 

latitude regions, and 3) benthic temperatures are representative of high latitude surface 341 

temperatures. Applying these assumptions to the modern ocean would generate a GMST 342 

estimate within ~1°C of measured and a modern latitudinal SST gradient within ~1°C of the 343 

surface ocean dataset (as discussed in Evans et al., 2018).   344 

 Probability distributions for each time interval were computed as follows. In the case 345 

of the tropical SST data, 1000 subsamples were taken, following which a random normally 346 

distributed error was added to each data point in the DeepMIP compilation, including both 347 

calibration uncertainty and variance in the data where multiple reconstructions are available 348 

for a given site and time interval. Mean tropical SST was calculated for each of these 349 

subsamples. To provide a BWT dataset of the same size as the subsampled tropical SST 350 

data, 1000 normally distributed values were calculated for each time interval, based on the 351 

mean ±1SD variation of the pooled benthic δ18O data from all sites including calibration 352 

uncertainty.  353 

 354 

3. Results  355 

3.1. Dsurf-1 to -4 356 

GMST estimates (Dsurf-default) during the latest Paleocene (n =4) range between 25.7 and 357 

26.8°C (Table 3). GMST estimates (Dsurf-default) during the PETM (n = 4) range between 31.1 358 

and 33.6°C (Table 3). GMST estimates (Dsurf-default) during the EECO (n = 4) range between 359 

25.4 and 29.0°C (Table 3). All four methods indicate that: 1) the PETM is warmer than the 360 

latest Paleocene (by ~4 to 9°C) and: 2) the PETM is warmer than the EECO (by ~3 to 7°C). 361 

GMST estimates derived using Dsurf-Frosty (i.e. which include planktonic foraminifera δ18O 362 

values) are consistently lower (up to 3.5°C) than those derived using Dsurf-default. GMST 363 

estimates derived using Dsurf-NoTEX (i.e. which exclude TEX86 estimates) are also consistently 364 
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lower (up to ~2°C) than those derived using Dsurf-default. GMST estimates derived using Dsurf-365 

NoMBT (i.e. which exclude MBT’/CBT values from marine sediments) are higher than GMST 366 

estimates derived using Dsurf-default (up to 1°C). GMST estimates derived using Dsurf-367 

NoMammal (i.e. which exclude δ18O mammal or paleosol estimates) are similar to GMST 368 

estimates derived using Dsurf-default (±0.5°C), with the exception of Dsurf-1 during the EECO 369 

which is ~3°C higher when δ18O mammal or paleosol values are excluded. 370 

 371 

3.2. Ddeep-1 372 

GMST estimates (Ddeep) during the latest Paleocene, PETM and EECO average 24.3°C 373 

(±1.8°C), 30.2°C (±9.2°C) and 28.0°C (±2.6°C), respectively (Table 3). This method indicates 374 

that: 1) the PETM is warmer than the latest Paleocene (by ~6°C) and, 2) the PETM is warmer 375 

than the EECO (by ~2°C).  376 

 377 

3.3. Dcomb-1 378 

GMST estimates (Dcomb) during the latest Paleocene, PETM and EECO average 21.0°C 379 

(±1.7°C), 26.0°C (±5.0°C) and 22.7°C (±2.3°C), respectively (Table 3). This method indicates 380 

that: 1) the PETM is warmer than the latest Paleocene (by ~5°C) and, 2) the PETM is warmer 381 

than the EECO (by ~3°C).  382 

 383 

4. Discussion 384 

4.1. Influence of different proxy datasets upon GMST estimates 385 

To explore the importance of other datasets upon our reconstructed latest Paleocene, PETM 386 

and EECO GMST estimates, we conducted a series of subsampling experiments. This was 387 

performed for methods Dsurf-1, -2, -3 and -4. In the first subsampling experiment, the inclusion 388 

of δ18O SST estimates from recrystallized planktonic foraminifera yields lower GMST 389 
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estimates (ca. ~1 to 3°C; e.g. Figure 6b). This is consistent amongst all four methods and 390 

agrees with previous studies which indicate that δ18O values from recrystallized planktonic 391 

foraminifera are significantly colder than estimates derived from the δ18O value of well-392 

preserved foraminifera, foraminiferal Mg/Ca ratios and clumped isotope values from larger 393 

benthic foraminifera (Hollis et al., 2019). The removal of TEX86 also results in lower GMST 394 

estimates (ca 2-4°C; e.g. Figure 6c) across all methodologies. This is consistent with previous 395 

studies which indicate that TEX86 gives slightly higher SSTs than other proxies, especially in 396 

the mid-to-high latitudes (e.g. Hollis et al., 2012; Inglis et al. 2015). This implies that the 397 

inclusion of TEX86 may lead to a slight warm bias in GMST estimates. 398 

The input of brGDGTs from archives other than mineral soils or peat can bias LAT 399 

estimates towards lower values (Inglis et al., 2017; Hollis et al., 2019) and the removal of 400 

MBT’/CBT-derived LAT estimates leads to a warm bias in GMST. However, excluding these 401 

proxies has a relatively minor impact on GMST (~0.5°C). This is because in regions where 402 

MBT’/CBT values are discarded (e.g. the SW Pacific), there are other proxies (e.g. pollen 403 

assemblages, leaf floral) which yield comparable LAT estimates. The removal of δ18O values 404 

from paleosols or mammals also leads to a small warm bias in GMST estimates (~0.5°C). 405 

Intriguingly, Dsurf-1 yields much higher GMST estimates (~3°C higher than Dsurf-default) when 406 

δ18O values from paleosols or mammals are excluded. This is attributed to the inclusion of two 407 

“cold” LAT estimates from the Salta Basin, NW Argentina (Hyland et al., 2017) which overly 408 

influence GMST (Figure 6e; Figure 7b-c;). These estimates are derived from the salinization 409 

index (SAL) (Sheldon et al., 2002) and the paleosol weathering index (PWI) (Gallagher and 410 

Sheldon, 2013), both of which yield a cold bias in the original DeepMIP database (Hollis et al. 411 

2019).  412 

 413 

4.2. Intercomparison of methods for calculating GMST  414 

For consistency, the following section discusses ‘baseline’ GMST estimates only. During the 415 

latest Paleocene and PETM, GMST estimates derived from Dsurf average ~27 and 32°C, 416 
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respectively (Figure 8). These values agree with previous studies analysing the latest 417 

Paleocene (~27°C; Zhu et al., 2019) and PETM (~32°C; Zhu et al., 2019). During the EECO, 418 

GMST estimates calculated using Dsurf range between ~25 and 28°C (Figure 8). These values 419 

are comparable to previous estimates from similar time intervals (ca. 29 to 30°C; Huber and 420 

Caballero, 2011; Caballero and Huber, 2013; Zhu et al., 2019), but are up to 4°C lower. This 421 

cooling can be attributed to two factors. Firstly, our EECO dataset is largely comprised of land 422 

air temperature proxy data (n = 80 LAT estimates; n = 27 SST estimates) which can suffer 423 

from a cold bias (Hollis et al., 2019). To explore whether LAT estimates skew GMST estimates 424 

towards lower values, we derived GMST using only SST or only LAT data. This analysis was 425 

performed using Dsurf-1, -2 and Dsurf-4 and indicates that the GMST estimate are ~2 to 4°C 426 

lower when calculated using LAT proxies only. This may be less pronounced in previous 427 

studies (i.e. Zhu et al. 2019) because they utilise a different compilation with fewer LAT 428 

estimates (n = 51; Huber and Caballero, 2011).  Secondly, the inclusion of δ18O values from 429 

paleosols or mammals leads to a cold bias in GMST estimates. For Dsurf-1, a direct comparison 430 

of new and prior estimates (Caballero and Huber, 2013) can be made in which the only change 431 

has been the use of a newer data compilation. For this new method (Figure 7), the EECO is 432 

~3.5°C colder than previous estimates (29.75°C; Caballero and Huber, 2013). Given that the 433 

floristic LAT estimates are identical between the DeepMIP compilation and the older 434 

compilation, this strongly suggests that the cooling with respect to older estimates is largely 435 

due to the incorporation of paleosol temperature estimates. This suggests that more 436 

investigation of the systematic cold bias introduced by paleosols is warranted. 437 

During the latest Paleocene, PETM and EECO, GMST estimates calculated using 438 

Ddeep average ~24°C (±1.8°C), ~30 (± 9.2°C) and ~28°C (± 2.6°C), respectively (Figure 8). 439 

These estimates are comparable to those derived via surface temperature proxies (Table 3). 440 

GMST estimates from the EECO are also comparable to previous estimates based on globally 441 

distributed benthic foraminifera data (~28°C; Hansen et al., 2013).  This implies that benthic 442 

foraminiferal δ18O values could be used to provide the ‘fine temporal structure’ of Cenozoic 443 
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temperature change  (Lunt et al., 2016;Hansen et al., 2013). However, we also urge caution 444 

as this approach scales GMST directly to BWT prior to the Pliocene, and therefore assumes 445 

that the characteristics of polar amplification are constant through time or balanced by other 446 

processes. We also note that GMST estimates for the PETM are associated with a large 447 

uncertainty. This is due to differences in δ18O values between sites and an overall lack of 448 

PETM benthic data (n = 22 from 3 sites) rather than an inherent uncertainty in the proxy or 449 

method of calculating GMST. 450 

During the latest Paleocene, PETM and EECO, GMST estimates calculated using 451 

Dcomb average ~21°C (±1.7°C), ~26 (± 5.0°C) and ~23°C (± 2.3°C), respectively (Figure 8). 452 

These estimates are consistently lower (by ~2 to 5°C) than GMST estimates derived using 453 

Dsurf (n = 4) and Ddeep (n = 1). We suggest this mismatch could be related to two factors. First, 454 

if deep water formation preferentially takes place during the winter months, GMST estimates 455 

will be biased towards lower values. Secondly, there are relatively few tropical SST estimates 456 

during the EECO (n = 10 sites), such that Dcomb may not be fully representative of actual 457 

tropical warmth.  458 

 459 

4.3. A ‘best estimate’ of GMST during the latest Paleocene, PETM and EECO  460 

To derive the ‘best estimate’ of GMST during the latest Paleocene, PETM and EECO, we 461 

combine GMST estimates from each ‘baseline’ experiment (except Dsurf-1 for the EECO which 462 

uses Dsurf-NoMammal) and calculate a weighted average (Figure 8). This approach is useful 463 

because it assigns lower confidence to GMST estimates associated with larger uncertainties 464 

(e.g. Ddeep-1 during the PETM). The reported uncertainty is the reciprocal square root of the 465 

sum of all the individual weights.  Sequential removal of one time series at a time (jacknife 466 

resampling) was performed to examine the influence of a single method upon the average 467 

GMST estimate. Jackknifing reveals that that no single method overly influences the mean 468 

GMST during the latest Paleocene, PETM or EECO (ca. ±1.0°C).  469 
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We find that the average GMST estimate for the latest Paleocene, PETM and EECO 470 

are 25.7°C (± 0.6°C), 32.7°C (± 0.8°C) and 27.3°C (± 0.5°C), respectively (Figure 8). Assuming 471 

a preindustrial GMST of 14°C, our average GMST estimates indicate that the latest 472 

Paleocene, PETM and EECO are +11.7°C, +18.7°C and +13.3°C warmer than pre-industrial, 473 

respectively. The GMST anomaly for the EECO is skewed to cooler values than previous work 474 

(~15°C warmer than pre-industrial; Caballero and Huber, 2013; Zhu et al., 2019) but lies within 475 

the range quoted previously in the IPCC AR5 (12.7°C warmer than pre-industrial).  On 476 

average, GMST increases by ~6 to 7°C between the latest Paleocene and PETM, in keeping 477 

with previous estimates (Frieling et al., 2019; Dunkley Jones, 2013). The PETM is 478 

approximately 5°C warmer than the EECO. This is higher than previously suggested (~3°C; 479 

Zhu et al., 2019) and may related to a cold bias in EECO GMST estimates (see Section 4.2). 480 

  481 

4.4. Equilibrium climate sensitivity during the latest Palaeocene, PETM and EECO 482 

Equilibrium climate sensitivity (ECS) can be defined as the equilibrium change in global near 483 

surface air temperature, resulting from a doubling in atmospheric CO2.  Various “flavours” of 484 

ECS exist, some of which specifically exclude various feedback processes not always included 485 

in climate models, such as those associated with ice sheets, vegetation, or aerosols (Rohling 486 

et al., 2012).  ECS may also be state-dependent (Caballero and Huber, 2013) and there is no 487 

reason to expect it has not changed with time. Therefore, direct comparison of ECS in the past 488 

to modern conditions is a fraught enterprise. For our purposes we define a ‘bulk ECS’ as being 489 

a gross estimate of ECS across time between our three intervals and preindustrial. Such 490 

calculations have been performed previously (Shaffer et al., 2016;Anagnostou et al., 2016) 491 

and they provide some constraint on the range of climate sensitivity values that are relevant 492 

for near-modern prediction (Rohling et al., 2012). For example, Anagnostou et al. (2016) 493 

indicated that early Eocene ECS (excluding ice sheet feedbacks) falls within the range 2.1–494 

4.6 °C per CO2 doubling with maximum probability for the EECO of 3.8 °C. These values (2.1–495 

4.6 °C per CO2 doubling) are similar to the IPCC ECS range (1.5–4.5 °C at 66% confidence). 496 
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Here we calculate bulk ECS estimates using the change in GMST and CO2 in the latest 497 

Paleocene, PETM and EECO intervals with reference to the pre-industrial. Following the 498 

approach of Anagnostou et al. (2016) and using the forcing equation of Byrne and Goldblatt 499 

(2014), we first determine the relative change in climate forcing relative to pre-industrial (ΔFCO2-500 

vs-PI): 501 

 502 

ΔFCO2-vs-PI = 5.32ln(Ct/CPI) + (0.39[ln(Ct/ CPI)]2   [6] 503 

 504 

where CPI is the atmospheric CO2 concentration during pre-industrial (278 ppm) and Ct refers 505 

to the CO2 reconstruction at a particular time in the Eocene. The mean proxy estimate of 506 

CO2 for the PETM is ~2200 ppmv (+1904/-699 ppmv; Gutjahr et al., 2017). The mean proxy 507 

estimate of CO2 for the LP is ~870 ppmv (Gutjahr et al., 2017; n.b. no published uncertainty 508 

available; here we assign an uncertainty of ±400ppm). The mean proxy estimate of CO2 for 509 

the EECO is ~1625 ppmv (±750 ppmv) (Anagnostou et al., 2016; Hollis et al., 2019). To 510 

calculate bulk ECS, we then use radiative forcing from a doubling of CO2 from Byrne and 511 

Goldblatt (2014) to translate CO2 into forcing relative to preindustrial (ΔFCO2): 512 

 513 

ECS = (ΔGMST) /ΔFCO2-vs-PI * 3.875     [7] 514 

 515 

Some of the temperature anomaly of the latest Paleocene, PETM, and EECO is caused not 516 

by CO2 but by the different paleotopography, paleobathymetry, and solar constant compared 517 

with preindustrial. Furthermore, we choose here to calculate an ECS that explicitly excludes 518 

feedbacks associated with vegetation, ice sheets, and aerosols, i.e. S[CO2,LI,VG,AE] in the 519 

nomenclature of Rohling et al (2012). To account for these effects, we subtract a value of 4.5°C 520 

(Caballero and Huber, 2013; Zhu et al. 2019) from the GMST in Table 3. This value of 4.5°C 521 

is based upon a comparison of preindustrial and Eocene simulations (both 1x CO2) conducted 522 
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with CESM1.2 (Zhu et al., 2019), which incorporates the paleogeographic, solar constant, ice 523 

sheet, vegetation, aerosol, and ice sheet changes from preindustrial to Eocene. This value is 524 

similar to previous studies which attribute ~4 to 6°C to the non-CO2 forcings and feedbacks 525 

(Anagnostou et al., 2016; Caballero and Huber, 2013, Lunt et al., 2012). However, we note 526 

that the sensitivity to these Eocene boundary conditions is likely model-dependant and this 527 

value will likely differ between model simulations. The uncertainties in our estimated ECS are 528 

the products of 10,000 realizations of the latest Paleocene, PETM and EECO CO2 values and 529 

the respective ΔGMST estimate (the mean estimate and uncertainty in Table 3) based on 530 

randomly sampling each variable within its 95% confidence interval uncertainty envelope 531 

We estimate S[CO2,LI,VG,AE] for the latest Paleocene, EECO and PETM to range between 532 

0.73 and 1.12 (66% confidence; Figure 9). This yields bulk ECS estimates for the latest 533 

Paleocene, EECO and PETM compared to modern which range between 2.8 to 4.8 °C per 534 

doubling CO2 (66% confidence). These values are comparable to previous estimates from the 535 

early Eocene which also account for paleogeography and other feedbacks (~2.1 to 4.6°C; 536 

Anagnostou et al., 2016) and fall within the modern ECS range predicted by the IPCC (1.5 to 537 

4.5°C per doubling CO2). However, care must be exercised when relating geological estimates 538 

to modern climate predictions (e.g. Rohling et al., 2012). In addition, published CO2 estimates 539 

remain uncertain (especially during the latest Paleocene and PETM) and new high-fidelity 540 

records are required to accurately constrain ECS during these super warm climates.  541 

 542 

5. Conclusions 543 

Using six different methods, we have quantified global mean surface temperatures (GMST) 544 

during the latest Paleocene, PETM and EECO. GMST was calculated within a coordinated, 545 

experimental framework and utilised three different input datasets. After evaluating the impact 546 

of different proxy datasets upon GMST estimates, we combined all six methodologies to derive 547 

an average GMST value during the latest Paleocene, PETM and EECO. Our results indicate 548 

high GMSTs during the latest Paleocene (25.7°C ± 0.6°C), PETM (32.7°C ± 0.8°C) and EECO 549 
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(27.3°C ± 0.5°C). Assuming a preindustrial GMST of 14°C, our average GMST estimates for 550 

the latest Paleocene, PETM and EECO are 11.7°C, 18.7°C and 13.3°C higher than pre-551 

industrial, respectively. Using our ‘combined’ GMST estimates, we then estimated a bulk ECS 552 

during the latest Paleocene, PETM and EECO. Our results range between 2.8 to 4.8°C (at 553 

66% confidence) per doubling of atmospheric CO2 when feedbacks associated with ice 554 

sheets, vegetation, and aerosols are accounted for. Taken together, our study improves our 555 

characterisation of the global mean temperature of these key time periods, allowing future 556 

climate change to be put into the context of past changes, and allowing us to provide a refined 557 

estimate of ECS.  558 
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Label 
in Fig. 
1 

Source 
Time 
window 

GMST 
(°C) 

Uncertainty Proxy system 

1a Farnsworth et al. (2019) EE 23.4 ±3.2 δ18O planktonic 

1b Farnsworth et al. (2019) EE 37.1 ±1.4 δ18O planktonic + TEX86 

2a Zhu et al. (2019) LP 27 n/a Multiple 

2b Zhu et al. (2019) EECO 29 ±3 Multiple 

2c Zhu et al. (2019) PETM 32 n/a Multiple 

3 Caballero and Huber (2013) EE 29.5 ±2.6 Multiple 

4 Hansen et al (2013) EE 28 n/a δ18O benthic 

5 Cramwinckel et al. (2018) EE 29.3 n/a Multiple 

 739 

Table 1: Previous studies that have determined GMST for the early Eocene (EE), EECO, 740 

PETM or latest Paleocene (LP). n/a indicates that no error bars were reported in the original 741 

publications.  742 
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 756 

Experiment Description 

Dsurf-default All SST and LAT data compiled in Hollis et al. (2019) but excluding recrystallized 

planktonic foraminifera δ18O values 

Dsurf-Frosty Dsurf-default but including recrystallized planktonic foraminifera δ18O values 

Dsurf-NoTEX Dsurf-default but excluding TEX86 values 

Dsurf-NoMBT Dsurf-default but excluding MBT(‘)/CBT values from marine sediments 

Dsurf-NoMammal Dsurf-default but excluding mammal and paleosol δ18O values 

Table 2: Default and optional subsampling experiments applied to Dsurf 757 
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 773 

 GMST (°C)  

 Dsurf-1 Dsurf-2 Dsurf-3 Dsurf-4 Ddeep-1 Dcomb-1 Average 

LP 25.9 (±1.0) 26.8 (±1.2) 25.7 (±6.0) 27.6 (±1.3) 24.3 (±1.1) 21.0 (±1.7) 25.7 (±0.6) 

PETM 33.6 (±1.2) 33.4 (±1.6) 31.2 (±7.6) 31.3 (±1.6) 30.2 (±9.2) 26.0 (±5.0) 32.7 (±0.8) 

EECO 26.3 (±0.7) 26.7 (±0.9) 27.9 (±7.0) 25.4 (±1.1) 28.0 (±2.6) 22.7 (±2.3) 27.3 (±0.5) 

 774 

Table 3: GMST for latest Paleocene (LP), PETM and EECO. Reported GMST estimates utilise 775 

‘baseline’ experiments except Dsurf-1 during the EECO which uses Dsurf-NoMammal. 776 

 777 
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 ECS (°C) (66% confidence) ECS (°C) (95% confidence) 

Latest Paleocene 3.9 – 4.8 3.6 – 5.5 

PETM 3.5 – 4.4 3.2 – 5.5 

EECO 2.8 – 3.8 2.6 – 5.2 

 791 

Table 4: Estimates of ECS (66% and 95% confidence) during the latest Paleocene, PETM 792 

and EECO. 793 
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Figure captions: 811 

Figure 1: Published GMST estimates during the early Paleogene (57 to 48 Ma). Dots 812 

represent average values. The horizontal limits on the individual dots represent the reported 813 

error. y-Axis labels refer to previous estimates (see Table 1). 814 

 815 

Figure 2: Location of proxies within the surface temperature dataset (Dsurf). A) SST proxies 816 

with time intervals indicated as followed: black circles, all three-time intervals represented. 817 

Red circles: PETM ± latest Paleocene intervals; orange circles, EECO interval (b) Terrestrial 818 

sites with time intervals indicated as in (a) and green circles, LP only. 819 

 820 

Figure 3: An illustration of Method Dsurf-2 for 2 sites: (a) Tanzania in the EECO as diagnosed 821 

using HadCM3L, and (b) Mid Waipara in the PETM as diagnosed using CCSM3.  The vertical 822 

dashed line shows < T >inferred and the horizontal dashed line shows Tproxy, which intercept at 823 

the orange dot. The dark blue dots show the intercept of Tlow with < Tlow >, and the red dots 824 

show the intercept of Thigh with < Thigh >.  825 

 826 

Figure 4: Inferred global mean temperature (< T >inferred) for each EECO-aged proxy in the 827 

DeepMIP database using Dsurf-2, as diagnosed using CCSM3.  The final estimate of global 828 

mean temperature is the average of all the individual sites.   829 

 830 

Figure 5: Predicted surface warming by Gaussian process regression using Dsurf-3 for the (a) 831 

latest Paleocene, (b) PETM and (c) EECO. Anomalies are relative to the present-day zonal 832 

mean surface temperature. Circles indicate all available SST and LAT proxy data for the 833 

respective time slice that were used to train the model. Circles for locations where multiple 834 

proxy reconstructions are available are slightly shifted in latitude for improved visibility. 835 
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 836 

Figure 6: Predicted surface warming by Gaussian process regression using Dsurf-3 for the 837 

EECO for the five core experiments (see Table 2). Anomalies are relative to the present-day 838 

zonal mean surface temperature. Circles indicate all available SST and LAT proxy data for the 839 

respective time slice and experiment that were used to train the model. Circles for locations 840 

where multiple proxy reconstructions are available are slightly shifted in latitude for improved 841 

visibility. 842 

 843 

Figure 7: An illustration of Method Dsurf-1 during the EECO.  (a) Modelled early Eocene (2240 844 

ppm) temperatures utilising CCSM3 (b) Interpolated absolute SST reconstructions, (c) Data-845 

model difference between (a) and (b). 846 

 847 

Figure 8: Summary of GMST estimates for the (a) latest Paleocene, (b) Paleocene-Eocene 848 

Thermal Maximum and (c) early Eocene Climatic Optimum. Error bars on each individual 849 

method are the standard deviation, except Dsurf-1 and Dsurf-2 which use the standard error. 850 

Error bar on weighted average is the reciprocal square root of the sum of all the individual 851 

weights.  852 

 853 

Figure 9: Probability density function of bulk ECS during the latest Paleocene, PETM and 854 

EECO that explicitly accounts for non-CO2 forcings of palaeography and solar constant, and 855 

feedbacks associated with land ice, vegetation, and aerosols (Zhu et al., 2019), i.e. 856 

S[CO2,LI,VG,AE] in the nomenclature of Rohling et al (2012). 857 

 858 
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