244 research outputs found

    Predictors of intracranial cerebral artery stenosis in patients before cardiac surgery and its impact on perioperative and long-term stroke risk

    Get PDF
    Background The aim of this prospective study was to determine the prevalence of stenosis within intracranial and extracranial arteries in patients before coronary artery bypass surgery (CABG), to evaluate the influence of intracranial artery stenosis on neurological outcome and to identify preoperative risk factors for these patients. Methods One hundred and seventy-five patients (71% males, mean age=66.1) scheduled for CABG were enrolled for extracranial Doppler duplex sonography, transcranial color-coded duplex sonography (TCCS) and transcranial Doppler (TCD) examination. Results Twenty-six patients (14.7%) had extracranial stenosis or occlusion and 13 patients (7.3%) intracranial vascular disease. Six patients (3.5%) had both extra- and intracranial artery disease. The presence of peripheral artery disease and diabetes mellitus was a strong risk factor for extracranial artery stenosis but not for intracranial artery stenosis, which occurred independently also of typical atherosclerotic risk factors like age >70, male sex, hypertension, hyperlipidemia, hyperhomocysteinemia, smoking habit, obesity (BMI>30) and waist to hip ratio >1. Functional neurological outcome of the patients with intracranial arterial disease evaluated 7 days after CABG was the same as the patients without extra- and intracranial stenosis. However, 12-months neurological follow-up revealed significantly more ischemic strokes in patients with intracranial artery stenosis compared to patients without intracranial stenosis (p=0.015). Conclusion The occurrence of intracranial artery stenosis in CABG patients cannot be predicted by well-known atherosclerotic risk factors and seems not to be associated with perioperative stroke

    Spectrum of Mutations in the RPGR Gene That Are Identified in 20% of Families with X-Linked Retinitis Pigmentosa

    Get PDF
    SummaryThe RPGR (retinitis pigmentosa GTPase regulator) gene for RP3, the most frequent genetic subtype of X-linked retinitis pigmentosa (XLRP), has been shown to be mutated in 10%–15% of European XLRP patients. We have examined the RPGR gene for mutations in a cohort of 80 affected males from apparently unrelated XLRP families, by direct sequencing of the PCR-amplified products from the genomic DNA. Fifteen different putative disease-causing mutations were identified in 17 of the 80 families; these include four nonsense mutations, one missense mutation, six microdeletions, and four intronic-sequence substitutions resulting in splice defects. Most of the mutations were detected in the conserved N-terminal region of the RPGR protein, containing tandem repeats homologous to those present in the RCC-1 protein (a guanine nucleotide-exchange factor for Ran-GTPase). Our results indicate that mutations either in as yet uncharacterized sequences of the RPGR gene or in another gene located in its vicinity may be a more frequent cause of XLRP. The reported studies will be beneficial in establishing genotype-phenotype correlations and should lead to further investigations seeking to understand the mechanism of disease pathogenesis

    Spectrum of Mutations in the RPGR Gene That Are Identified in 20% of Families with X-Linked Retinitis Pigmentosa

    Get PDF
    SummaryThe RPGR (retinitis pigmentosa GTPase regulator) gene for RP3, the most frequent genetic subtype of X-linked retinitis pigmentosa (XLRP), has been shown to be mutated in 10%–15% of European XLRP patients. We have examined the RPGR gene for mutations in a cohort of 80 affected males from apparently unrelated XLRP families, by direct sequencing of the PCR-amplified products from the genomic DNA. Fifteen different putative disease-causing mutations were identified in 17 of the 80 families; these include four nonsense mutations, one missense mutation, six microdeletions, and four intronic-sequence substitutions resulting in splice defects. Most of the mutations were detected in the conserved N-terminal region of the RPGR protein, containing tandem repeats homologous to those present in the RCC-1 protein (a guanine nucleotide-exchange factor for Ran-GTPase). Our results indicate that mutations either in as yet uncharacterized sequences of the RPGR gene or in another gene located in its vicinity may be a more frequent cause of XLRP. The reported studies will be beneficial in establishing genotype-phenotype correlations and should lead to further investigations seeking to understand the mechanism of disease pathogenesis

    Intradialytic Complement Activation Precedes the Development of Cardiovascular Events in Hemodialysis Patients

    Get PDF
    Background: Hemodialysis (HD) is a life-saving treatment for patients with end stage renal disease. However, HD patients have markedly increased rates of cardiovascular morbidity and mortality. Previously, a link between the complement system and cardiovascular events (CV-events) has been reported. In HD, systemic complement activation occurs due to blood-to-membrane interaction. We hypothesize that HD-induced complement activation together with inflammation and thrombosis are involved in the development of CV-events in these patients. Methods: HD patients were followed for the occurrence of CV-events during a maximum follow-up of 45 months. Plasma samples were collected from 55 patients at different time points during one HD session prior to follow-up. Plasma levels of mannose-binding lectin, properdin and C3d/C3 ratios were assessed by ELISA. In addition, levels of von Willebrand factor, TNF-α and IL-6/IL-10 ratios were determined. An ex-vivo model of HD was used to assess the effect of complement inhibition. Results: During median follow-up of 32 months, 17 participants developed CV-events. In the CV-event group, the C3d/C3-ratio sharply increased 30 min after the start of the HD session, while in the event-free group the ratio did not increase. In accordance, HD patients that developed a CV-event also had a sustained higher IL-6/IL-10-ratio during the first 60 min of the HD session, followed by a greater rise in TNF-α levels and von Willebrand factor at the end of the session. In the ex-vivo HD model, we found that complement activation contributed to the induction of TNF-α levels, IL-6/IL-10-ratio and levels of von Willebrand factor. Conclusions: In conclusion, these findings suggest that early intradialytic complement activation predominantly occurred in HD patients who develop a CV-event during follow-up. In addition, in these patients complement activation was accompanied by a pro-inflammatory and pro-thrombotic response. Experimental complement inhibition revealed that this reaction is secondary to complement activation. Therefore, our data suggests that HD-induced complement, inflammation and coagulation are involved in the increased CV risk of HD patients.info:eu-repo/semantics/publishedVersio

    Renalase Gene Polymorphisms in Patients With Type 2 Diabetes, Hypertension and Stroke

    Get PDF
    Renalase is a novel, recently identified, flavin adenine dinucleotide-dependent amine oxidase. It is secreted by the kidney and metabolizes circulating catecholamines. Renalase has significant hemodynamic effects, therefore it is likely to participate in the regulation of cardiovascular function.The aim of our study was to investigate the involvement of renalase gene polymorphisms in hypertension in type 2 diabetes patients. A total of 892 patients and 400 controls were genotyped with three SNPs in the renalase gene. The C allele of rs2296545 SNP was associated with hypertension (P < 0.01). For rs2576178 SNP, frequencies in hypertensive patients differed from controls, but not from normotensive patients. For rs10887800 SNP, the differences in the G allele frequencies were observed in hypertensive patients with stroke, with 66% of patients being GG homozygotes. To confirm observed association we later genotyped 130 stroke patients without diabetes. The OR for risk allele was 1.79 (95% CI 1.33–2.41). In conclusion, the renalase gene polymorphism was associated with hypertension in type 2 diabetes patients. The most interesting result is a strong association of the rs10887800 polymorphism with stroke in patients with and without diabetes. The G allele of this polymorphism might thus be useful in identifying diabetes patients at increased risk of stroke

    Retinitis Pigmentosa GTPase Regulator (RPGR) protein isoforms in mammalian retina:insights into X-linked Retinitis Pigmentosa and associated ciliopathies

    Get PDF
    AbstractMutations in the cilia-centrosomal protein Retinitis Pigmentosa GTPase Regulator (RPGR) are a frequent cause of retinal degeneration. The RPGR gene undergoes complex alternative splicing and encodes multiple protein isoforms. To elucidate the function of major RPGR isoforms (RPGR1–19 and RPGRORF15), we have generated isoform-specific antibodies and examined their expression and localization in the retina. Using sucrose-gradient centrifugation, immunofluorescence and co-immunoprecipitation methods, we show that RPGR isoforms localize to distinct sub-cellular compartments in mammalian photoreceptors and associate with a number of cilia-centrosomal proteins. The RCC1-like domain of RPGR, which is present in all major RPGR isoforms, is sufficient to target it to the cilia and centrosomes in cultured cells. Our findings indicate that multiple isotypes of RPGR may perform overlapping yet somewhat distinct transport-related functions in photoreceptors

    Genetic polymorphisms of angiotensin-2 type 1 receptor and angiotensinogen and risk of renal dysfunction and coronary heart disease in type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased activation of the renin-angiotensin system (RAS) may be important in promoting coronary heart disease (CHD) and renal dysfunction, but limited data are available on associations between angiotensin type 1 receptor (<it>AGT1R</it>) and angiotensinogen (<it>AGT</it>) genotypes in type 2 diabetes.</p> <p>Methods</p> <p>Study participants were diabetics from the Health Professionals Follow-Up Study (HPFS) and the Nurses' Health Study (NHS). We analyzed single nucleotide polymorphisms (SNPs) associated with cardiovascular pathophysiology (including <it>AGT1R </it>T573C, <it>AGT1R </it>A1166C, and <it>AGT </it>M235T) and presence of renal dysfunction (eGFR<60 ml/min/1.73 m<sup>2</sup>) or history of CHD.</p> <p>Results</p> <p>The <it>AGT1R </it>1166 C-allele was associated with eGFR<60 ml/min/1.73 m<sup>2 </sup>(multivariable OR 1.63 [1.01, 2.65]) in the HPFS men (n = 733) and in the combined dataset (n = 1566) (OR 1.42 [1.02, 1.98]). The <it>AGT1R </it>1166 C-allele was also associated with CHD in men (OR 1.57 [1.10, 2.24]). In NHS women (n = 833), <it>AGT </it>235T-allele was associated with CHD (OR 1.72 [1.20, 2.47]). Removal of hypertension from the fully adjusted models did not influence results, suggesting that the associations may not be mediated by hypertension. There were significant interactions between sex and <it>AGT1R </it>1166 C-allele (p = 0.008) and <it>AGT </it>M235T (p = 0.03) in models for CHD. No significant associations were seen between <it>AGT1R </it>T573 C-allele and renal dysfunction or CHD.</p> <p>Conclusion</p> <p>Polymorphisms in <it>AGT1R </it>and <it>AGT </it>genes are associated with renal dysfunction and CHD in type 2 diabetes and further support the important role of the RAS in these complications. Sex may modify associations between <it>AGT1R </it>1166 C-allele and <it>AGT </it>235T and CHD in type 2 diabetes.</p

    Dataset of allele and genotype frequencies of the three functionally significant polymorphisms of the MMP genes in Russian patients with primary open-angle glaucoma, essential hypertension and peptic ulcer

    Get PDF
    Data on the allele and genotype frequencies of the three functionally significant single nucleotide polymorphisms (SNPs) of the matrix metalloproteinases (MMP) genes (rs1799750 MMP1, rs3918242 and rs17576 MMP9 ) in Russian patients with primary open-angle glaucoma, essential hypertension and peptic ulcer are presented. Association studies identified these SNPs as possible significant markers associated with many multifactorial disorders, including POAG, EH, and P

    RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins

    Get PDF
    Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene account for almost 20% of patients with retinitis pigmentosa. Most mutations are detected in alternatively-spliced RPGR-ORF15 isoform(s), which are primarily but not exclusively expressed in the retina. We show that, in addition to the axoneme, the RPGR-ORF15 protein is localized to the basal bodies of photoreceptor connecting cilium and to the tip and axoneme of sperm flagella. Mass spectrometric analysis of proteins that were immunoprecipitated from the retinal axoneme-enriched fraction using an anti-ORF15 antibody identified two chromosome-associated proteins, Structural Maintenance of Chromosomes (SMC) 1 and SMC3. Using pulldown assays, we demonstrate that the interaction of RPGR with SMC1 and SMC3 is mediated, at least in part, by the RCC1-like domain (RLD) of RPGR. This interaction was not observed with phosphorylation-deficient mutants of SMC1. Both SMC1 and SMC3 localized to the cilia of retinal photoreceptors and MDCK cells, suggesting a broader physiological relevance of this interaction. Additional immunoprecipitation studies revealed the association of RPGR-ORF15 isoform(s) with the intraflagellar transport polypeptide IFT88 as well as microtubule motor proteins, including KIF3A, p150(Glued) and p50-dynamitin. Inhibition of dynein function by over-expressing p50 abrogated the localization of RPGR-ORF15 to basal bodies. Taken together, these results provide novel evidence for the possible involvement of RPGR-ORF15 in microtubule organization and regulation of transport in primary cilia
    corecore