56 research outputs found

    Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials

    Get PDF
    AbstractIn recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations

    Clinical Characteristics and Quality of Life in Adults Initiating Medical Marijuana Treatment

    Get PDF
    Introduction: Despite the rising availability and use of medical marijuana (MM) in the USA, little is known about the demographics, clinical characteristics, or quality of life of MM patients. This study describes the demographic characteristics and health-related quality of life (HRQoL) of MM patients who are initiating treatment in Pennsylvania. Methods: Two-hundred adults naive to MM and referred for any of the 23 state-approved qualifying conditions were recruited at three MM dispensaries in Pennsylvania between September 2020 and March 2021. All participants consented to the study; completed semi-structured interviews that included demographic questionnaires, the Short Form-36 (SF-36), and Generalized Anxiety Disorder-7 (GAD-7); provided height and weight measurements; and allowed access their dispensary medical records. Results: Participants had a mean age of 48.5 ± 15.6 years, predominantly identified as female (67.5%), and were most commonly referred for chronic pain (63.5%) and/or anxiety (58.5%). Additionally, 46.0% were living with obesity as determined by BMI. Relative to a normative sample, participants reported diminished HRQoL in several domains, most notably in role limitations due to physical health (M = 46.0 ± 42.0), role limitations due to emotional problems (M = 52.5 ± 42.3), energy and fatigue (M = 39.8 ± 20.2), and pain (M = 49.4 ± 26.0). Discussion/Conclusion: Patients initiating MM treatment experienced low HRQoL in multiple domains. Future studies could evaluate the relationship between HRQoL and patients’ decisions to pursue MM treatment, as well as changes in HRQoL with MM use over time

    Time perception: the bad news and the good.

    Get PDF
    Time perception is fundamental and heavily researched, but the field faces a number of obstacles to theoretical progress. In this advanced review, we focus on three pieces of 'bad news' for time perception research: temporal perception is highly labile across changes in experimental context and task; there are pronounced individual differences not just in overall performance but in the use of different timing strategies and the effect of key variables; and laboratory studies typically bear little relation to timing in the 'real world'. We describe recent examples of these issues and in each case offer some 'good news' by showing how new research is addressing these challenges to provide rich insights into the neural and information-processing bases of timing and time perception. WIREs Cogn Sci 2014, 5:429-446. doi: 10.1002/wcs.1298 This article is categorized under: Psychology > Perception and Psychophysics Neuroscience > Cognition.This is the final published version. It originally appeared at http://onlinelibrary.wiley.com/doi/10.1002/wcs.1298/abstract, published by Wiley

    Motor activity improves temporal expectancy

    Get PDF
    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments

    NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail

    Get PDF
    Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience

    Temporal regularity of the environment drives time perception

    Get PDF
    It’s reasonable to assume that a regularly paced sequence should be perceived as regular, but here we show that perceived regularity depends on the context in which the sequence is embedded. We presented one group of participants with perceptually regularly paced sequences, and another group of participants with mostly irregularly paced sequences (75% irregular, 25% regular). The timing of the final stimulus in each sequence could be varied. In one experiment, we asked whether the last stimulus was regular or not. We found that participants exposed to an irregular environment frequently reported perfectly regularly paced stimuli to be irregular. In a second experiment, we asked participants to judge whether the final stimulus was presented before or after a flash. In this way, we were able to determine distortions in temporal perception as changes in the timing necessary for the sound and the flash to be perceived synchronous. We found that within a regular context, the perceived timing of deviant last stimuli changed so that the relative anisochrony appeared to be perceptually decreased. In the irregular context, the perceived timing of irregular stimuli following a regular sequence was not affected. These observations suggest that humans use temporal expectations to evaluate the regularity of sequences and that expectations are combined with sensory stimuli to adapt perceived timing to follow the statistics of the environment. Expectations can be seen as a-priori probabilities on which perceived timing of stimuli depend

    Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network

    Get PDF
    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support
    corecore