306 research outputs found

    Accumulation of the PX domain mutant Frank-ter Haar syndrome protein Tks4 in aggresomes

    Get PDF
    BACKGROUND: Cells deploy quality control mechanisms to remove damaged or misfolded proteins. Recently, we have reported that a mutation (R43W) in the Frank-ter Haar syndrome protein Tks4 resulted in aberrant intracellular localization. RESULTS: Here we demonstrate that the accumulation of Tks4(R43W) depends on the intact microtubule network. Detergent-insoluble Tks4 mutant colocalizes with the centrosome and its aggregate is encaged by the intermediate filament protein vimentin. Both the microtubule inhibitor nocodazole and the histone deacetylase inhibitor Trichostatin A inhibit markedly the aggresome formation in cells expressing Tks4(R43W). Finally, pretreatment of cells with the proteasome inhibitor MG132 markedly increases the level of aggresomes formed by Tks4(R43W). Furthermore, two additional mutant Tks4 proteins (Tks4(1-48) or Tks4(1-341)) have been investigated. Whereas the shorter Tks4 mutant, Tks4(1-48), shows no expression at all, the longer Tks4 truncation mutant accumulates in the nuclei of the cells. CONCLUSIONS: Our results suggest that misfolded Frank-ter Haar syndrome protein Tks4(R43W) is transported via the microtubule system to the aggresomes. Lack of expression of Tks4(1-48) or aberrant intracellular expressions of Tks4(R43W) and Tks4(1-341) strongly suggest that these mutations result in dysfunctional proteins which are not capable of operating properly, leading to the development of FTHS

    Effects of vitamin D3 derivative--calcitriol on pharmacological reactivity of aortic rings in a rodent PCOS model.

    Get PDF
    Abstract BACKGROUND: The aim of this study was to examine the effects of the hyperandrogenic state in dihydrotestosterone (DHT)-induced polycystic ovary syndrome (PCOS), the vascular responses to different vasoactive agents, and the modulatory role of vitamin D3. METHODS: APCOS model was induced by DHT application in 20 female Wistar rats. Ten of the DHT treated rats simultaneously received calcitriol treatment. After 10 weeks, myographs were used to test the reactivity of isolated thoracic aortic rings to norepinephrine and acetylcholine. Thereafter, the vascular rings were incubated with the NO-synthase blocker (nitro-L-arginine methyl ester) or the cyclooxygenase inhibitor (indomethacin) for 20 min, and the effects of norepinephrine and acetylcholine were re-evaluated. RESULTS: Norepinephrine-induced vasoconstriction was enhanced after DHT treatment, but this effect was attenuated by calcitriol administration. Vasorelaxation of DHT-treated thoracic aortic rings was impaired, but this could be partly reversed by calcitriol application. Impaired NO-dependent vasorelaxation in DHT-treated animals was mostly reversed by concomitant calcitriol administration, but this effect was diminished by prostanoid-dependent vasoconstriction. CONCLUSIONS: These studies show that the enhanced sensitivity to vasoconstrictors and impaired NO-dependent vasorelaxation in hyperandrogenic PCOS rats could be partially reversed by calcitriol treatment

    Reduced Estradiol-Induced Vasodilation and Poly-(ADP-Ribose) Polymerase (PARP) Activity in the Aortas of Rats with Experimental Polycystic Ovary Syndrome (PCOS)

    Get PDF
    Polycystic ovary syndrome (PCOS) is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT). After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE). Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose) polymerase (PARP) activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS

    The Tyrosine Kinase c-Src Directly Mediates Growth Factor-Induced Notch-1 and Furin Interaction and Notch-1 Activation in Pancreatic Cancer Cells

    Get PDF
    The proteolytic activity of Furin responsible for processing full length Notch-1 (p300) plays a critical role in Notch signaling. The amplitude and duration of Notch activity can be regulated at various points in the pathway, but there has been no report regarding regulation of the Notch-1-Furin interaction, despite its importance. In the present study, we found that the Notch-1-Furin interaction is regulated by the non-receptor tyrosine kinase, c-Src. c-Src and Notch-1 are physically associated, and this association is responsible for Notch-1 processing and activation. We also found that growth factor TGF-α, an EGFR ligand, and PDGF-BB, a PDGFR ligand, induce the Notch-1-Furin interaction mediated by c-Src. Our results support three new and provocative conclusions: (1) The association between Notch-1 and Furin is a well-regulated process; (2) Extracellular growth factor signals regulate this interaction, which is mediated by c-Src; (3) There is cross-talk between the plasma growth factor receptor-c-Src and Notch pathways. Co-localization of Notch-1 and c-Src was confirmed in xenograft tumor tissues and in the tissues of pancreatic cancer patients. Our findings have implications for the mechanism by which the Notch and growth factor receptor-c-Src signaling pathways regulate carcinogenesis and cancer cell growth

    Sequences of Regressions Distinguish Nonmechanical from Mechanical Associations between Metabolic Factors, Body Composition, and Bone in Healthy Postmenopausal Women

    Get PDF
    Background: There is increasing recognition of complex interrelations between the endocrine functions of bone and fat tissues or organs.  Objective: The objective was to describe nonmechanical and mechanical links between metabolic factors, body composition, and bone with the use of graphical Markov models.  Methods: Seventy postmenopausal women with a mean ± SD age of 62.3 ± 3.7 y and body mass index (in kg/m2) of 24.9 ± 3.8 were recruited. Bone outcomes were peripheral quantitative computed tomography measures of the distal and diaphyseal tibia, cross-sectional area (CSA), volumetric bone mineral density (vBMD), and cortical CSA. Biomarkers of osteoblast and adipocyte function were plasma concentrations of leptin, adiponectin, osteocalcin, undercarboxylated osteocalcin (UCOC), and phylloquinone. Body composition measurements were lean and percent fat mass, which were derived with the use of a 4-compartment model. Sequences of Regressions, a subclass of graphical Markov models, were used to describe the direct (nonmechanical) and indirect (mechanical) interrelations between metabolic factors and bone by simultaneously modeling multiple bone outcomes and their relation with biomarker outcomes with lean mass, percent fat mass, and height as intermediate explanatory variables.  Results: The graphical Markov models showed both direct and indirect associations linking plasma leptin and adiponectin concentrations with CSA and vBMD. At the distal tibia, lean mass, height, and adiponectin-UCOC interaction were directly explanatory of CSA (R2 = 0.45); at the diaphysis, lean mass, percent fat mass, leptin, osteocalcin, and age-adiponectin interaction were directly explanatory of CSA (R2 = 0.49). The regression models exploring direct associations for vBMD were much weaker, with R2 = 0.15 and 0.18 at the distal and diaphyseal sites, respectively. Lean mass and UCOC were associated, and the global Markov property of the graph indicated that this association was explained by osteocalcin.  Conclusions: This study, to our knowledge, offers a novel approach to the description of the complex physiological interrelations between adiponectin, leptin, and osteocalcin and the musculoskeletal system. There may be benefits to jointly targeting both systems to improve bone health

    Grb2 monomer-dimer equilibrium determines normal versus oncogenic function

    Get PDF
    The adaptor protein growth factor receptor-bound protein 2 (Grb2) is ubiquitously expressed in eukaryotic cells and involved in a multitude of intracellular protein interactions. Grb2 plays a pivotal role in tyrosine kinase-mediated signal transduction including linking receptor tyrosine kinases to the Ras/mitogen-activated protein (MAP) kinase pathway, which is implicated in oncogenic outcome. Grb2 exists in a constitutive equilibrium between monomeric and dimeric states. Here we show that only monomeric Grb2 is capable of binding to SOS and upregulating MAP kinase signalling and that the dimeric state is inhibitory to this process. Phosphorylation of tyrosine 160 (Y160) on Grb2, or binding of a tyrosylphosphate-containing ligand to the SH2 domain of Grb2, results in dimer dissociation. Phosphorylation of Y160 on Grb2 is readily detectable in the malignant forms of human prostate, colon and breast cancers. The self-association/dissociation of Grb2 represents a switch that regulates MAP kinase activity and hence controls cancer progression

    Engineering alternative butanol production platforms in heterologous bacteria

    Get PDF
    Alternative microbial hosts have been engineered as biocatalysts for butanol biosynthesis. The butanol synthetic pathway of Clostridium acetobutylicum was first re-constructed in Escherichia coli to establish a baseline for comparison to other hosts. Whereas polycistronic expression of the pathway genes resulted in the production of 34 mg/L butanol, individual expression of pathway genes elevated titers to 200 mg/L. Improved titers were achieved by co-expression of Saccharomyces cerevisiae formate dehydrogenase while overexpression of E. coli glyceraldehyde 3-phosphate dehydrogenase to elevate glycolytic flux improved titers to 580 mg/L. Pseudomonas putida and Bacillus subtilis were also explored as alternative production hosts. Polycistronic expression of butanol biosynthetic genes yielded butanol titers of 120 and 24 mg/L from P. putida and B. subtilis, respectively. Production in the obligate aerobe P. putida was dependent upon expression of bcd-etfAB. These results demonstrate the potential of engineering butanol biosynthesis in a variety of heterologous microorganisms, including those cultivated aerobically.Synthetic Biology Engineering Research CenterNational Science Foundation (Grant no. 0540879)Massachusetts Institute of Technology. Energy Initiative (Grant no. 6917278)Natural Sciences and Engineering Research Council of CanadaKorea Research Foundation (Grant

    Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression.</p> <p>Methods</p> <p>Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2.</p> <p>Results</p> <p>We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate.</p> <p>Conclusions</p> <p>Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.</p

    Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis

    Get PDF
    Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1fl/flmice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL
    corecore