187 research outputs found

    Factores influyentes en el tiempo hasta la progresión bioquímica después de prostatectomía radical

    Get PDF
    INTRODUCTION: We assessed the time-influencing clinical-pathological factors for biochemical progression of an equal series of patients from a single institution. MATERIALS AND METHODS: Retrospective analysis of 278 patients with biochemical progression following prostatectomy. We considered biochemical progression to be PSA>0.4 ng/ml. We performed the trial using the Cox model (univariate and multivariate) and using the Student's t-test to compare averages. RESULTS: With a mean follow-up of 4 (±3 DE) years, the univariate study showed a mean until progression for the Gleason score 2-6 in the biopsy of 824 days and 543 for the Gleason score 7-10 (p=0.003). For negative surgical margins, the mean was 920 days and 545 for positive margins (p=0.0001). In the case of a Gleason score 2-7 in the specimen, the mean was 806 days and 501 for a Gleason score 8-10 (p=0.001). Lastly, the mean for the cases with Ki-67 negative in the specimen ( 10%) (p=0.003). In the multivariate study, Ki-67 (OR 1.028; IC 95% 1-1.01; p=0.0001) and Gleason score 8-10 (OR 1.62; IC 95% 1.5-2.45; p=0.026) in the specimen, and initial PSA >10 ng/ml (OR 1.02; IC 95% 1.01-1.04; p=0.0001) were independent variables. Using these variables, we designed a predictive model with three groups. The time until the progression of each group was 1,081, 551 and 218 days respectively. CONCLUSION: The Gleason score 7-10 in the prostate biopsy, the presence of Ki-67, the positive margins and the Gleason score 8-10 in the specimen, and the initial PSA > 10 ng/ml are time-influencing factors until biochemical progression. Pathological Gleason score 8-10, PSA > 10 ng/ml and Ki-67 are independent factors

    Improving consistency in AHP decision-making processes

    Full text link
    Decision making in engineering is becoming increasingly complex due to the large number of alternatives and multiple conflicting goals. Powerful decision-support expert systems powered by suitable software are increasingly necessary. In this paper, the multiple attribute decision method known as analytical hierarchy process (AHP), which uses pairwise comparisons with numerical judgments, is considered. Since judgments may lack a minimum level of consistency, mechanisms to improve consistency are necessary. A method to achieve consistency through optimisation is described in this paper. This method has the major advantage of depending on just n decision variables – the number of compared elements – and so is less computationally expensive than other optimisation methods, and can be easily implemented in virtually any existing computer environment. The proposed approach is exemplified by considering a simplified version of one of the most important problems faced by water supply managers, namely, the minimisation of water loss. 2012 Elsevier Inc. All rights reserved.This work has been performed under the support of project IDAWAS, DPI2009-11591 of the Direccionn General de Investigacion del Ministerio de Educacion y Ciencia (Spain) and ACOMP/2011/188 of the Conselleria de Educacion de la Generalitat Valenciana. The first author was supported by Spanish project MTM2010-18539. The third author is also indebted to the Universitat Politecnica de Valencia for the sabbatical leave granted during the first semester of 2011. The use of English in this paper was revised by John Rawlins.Benítez López, J.; Delgado Galván, XV.; Izquierdo Sebastián, J.; Pérez García, R. (2012). Improving consistency in AHP decision-making processes. Applied Mathematics and Computation. 219(5):2432-2441. https://doi.org/10.1016/j.amc.2012.08.079S24322441219

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function

    Conditional Inactivation of Brca1, p53 and Rb in Mouse Ovaries Results in the Development of Leiomyosarcomas

    Get PDF
    Epithelial ovarian cancer (EOC) is thought to arise in part from the ovarian surface epithelium (OSE); however, the molecular events underlying this transformation are poorly understood. Germline mutations in the BRCA1 tumor suppressor gene result in a significantly increased risk of developing EOC and a large proportion of sporadic EOCs display some sort of BRCA1 dysfunction. To generate a model in which Brca1-mediated transformation can be studied, we previously inactivated Brca1 alone in murine OSE, which resulted in an increased accumulation of premalignant changes, but no tumor formation. In this study, we examined tumor formation in mice with conditionally expressed alleles of Brca1, p53 and Rb, alone or in combination. Intrabursal injection of adenovirus expressing Cre recombinase to inactivate p53 resulted in tumors in 100% of mice. Tumor progression was accelerated in mice with concomitant inactivation of Brca1 and p53, but not Rb and p53. Immunohistologic analyses classified the tumors as leiomyosarcomas that may be arising from the ovarian bursa. Brca1 inactivation in primary cultures of murine OSE cells led to a suppression of proliferation that could be rescued by concomitant inactivation of p53 and/or Rb. Brca1-deficient OSE cells displayed an increased sensitivity to the DNA damaging agent cisplatin, and this effect could be modulated by inactivation of p53 and/or Rb. These results indicate that Brca1 deficiency can accelerate tumor development and alter the sensitivity of OSE cells to chemotherapeutic agents. Intrabursal delivery of adenovirus intended to alter gene expression in the ovarian surface epithelium may, in some strains of mice, result in more rapid transformation of adjacent cells, resulting in leiomyosarcomas

    Genetic Abolishment of Hepatocyte Proliferation Activates Hepatic Stem Cells

    Get PDF
    Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer

    Upregulation of p27 and its inhibition of CDK2/cyclin E activity following DNA damage by a novel platinum agent are dependent on the expression of p21

    Get PDF
    The cisplatin analogue 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinumIV (DAP) is a DNA-damaging agent that will be entering clinical trials for its potent cytotoxic effects against cisplatin-resistant tumour cells. This cytotoxicity may reside in its ability to selectively activate G1-phase checkpoint response by inhibiting CDKs via the p53/p21 pathway. We have now evaluated the role of another CDK inhibitor p27 as a contributor to DAP-mediated inhibition of G1-phase CDK2 activity. Our studies in ovarian A2780 tumour cells demonstrate that p27 levels induced by DAP are comparable to or greater than those seen for p21. The induction of p27 is not through a transcriptional mechanism, but rather is due to a four-fold increase in protein stabilisation through a mechanism dependent on p21. Moreover, DAP-induced p21 promoted the selective increase of p27 in the CDK2 complex, but not in CDK4 complex, and this selective increase contributed to inhibition of the CDK2 kinase activity. The inhibited complex contained either p27 or p21, but not both, with the relative levels of cyclin E associated with p27 and p21 indicating that about 25% of the inhibition of CDK2 activity was due to p27 and 75% due to p21. This study provides the first evidence that p27 upregulation is directly attributable to activation of the p53/p21 pathway by a DNA-damaging agent, and promulgates p53/p21/p27 axis as a significant component of checkpoint response

    Real-Time Imaging of HIF-1α Stabilization and Degradation

    Get PDF
    HIF-1α is overexpressed in many human cancers compared to normal tissues due to the interaction of a multiplicity of factors and pathways that reflect specific genetic alterations and extracellular stimuli. We developed two HIF-1α chimeric reporter systems, HIF-1α/FLuc and HIF-1α(ΔODDD)/FLuc, to investigate the tightly controlled level of HIF-1α protein in normal (NIH3T3 and HEK293) and glioma (U87) cells. These reporter systems provided an opportunity to investigate the degradation of HIF-1α in different cell lines, both in culture and in xenografts. Using immunofluorescence microscopy, we observed different patterns of subcellular localization of HIF-1α/FLuc fusion protein between normal cells and cancer cells; similar differences were observed for HIF-1α in non-transduced, wild-type cells. A dynamic cytoplasmic-nuclear exchange of the fusion protein and HIF-1α was observed in NIH3T3 and HEK293 cells under different conditions (normoxia, CoCl2 treatment and hypoxia). In contrast, U87 cells showed a more persistent nuclear localization pattern that was less affected by different growing conditions. Employing a kinetic model for protein degradation, we were able to distinguish two components of HIF-1α/FLuc protein degradation and quantify the half-life of HIF-1α fusion proteins. The rapid clearance component (t1/2 ∼4–6 min) was abolished by the hypoxia-mimetic CoCl2, MG132 treatment and deletion of ODD domain, and reflects the oxygen/VHL-dependent degradation pathway. The slow clearance component (t1/2 ∼200 min) is consistent with other unidentified non-oxygen/VHL-dependent degradation pathways. Overall, the continuous bioluminescence readout of HIF-1α/FLuc stabilization in vitro and in vivo will facilitate the development and validation of therapeutics that affect the stability and accumulation of HIF-1α

    miR-210: fine-tuning the hypoxic response

    Get PDF
    Hypoxia is a central component of the tumor microenvironment and represents a major source of therapeutic failure in cancer therapy. Recent work has provided a wealth of evidence that noncoding RNAs and, in particular, microRNAs, are significant members of the adaptive response to low oxygen in tumors. All published studies agree that miR-210 specifically is a robust target of hypoxia-inducible factors, and the induction of miR-210 is a consistent characteristic of the hypoxic response in normal and transformed cells. Overexpression of miR-210 is detected in most solid tumors and has been linked to adverse prognosis in patients with soft-tissue sarcoma, breast, head and neck, and pancreatic cancer. A wide variety of miR-210 targets have been identified, pointing to roles in the cell cycle, mitochondrial oxidative metabolism, angiogenesis, DNA damage response, and cell survival. Additional microRNAs seem to be modulated by low oxygen in a more tissue-specific fashion, adding another layer of complexity to the vast array of protein-coding genes regulated by hypoxia

    Regulation of mTORC1 Signaling by pH

    Get PDF
    BACKGROUND: Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. METHODOLOGY/FINDINGS: We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1-TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1-TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. CONCLUSIONS: This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions

    A taxonomy of epithelial human cancer and their metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination.</p> <p>Methods</p> <p>We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures.</p> <p>Results</p> <p>Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the remaining tumors cluster with the tissue of destination.</p> <p>Conclusion</p> <p>Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific profile.</p
    corecore