136 research outputs found

    The mass-metallicity relation at z~1-2 and its dependence on star formation rate

    Get PDF
    We present a new measurement of the gas-phase mass-metallicity relation (MZR), and its dependence on star formation rates (SFRs) at 1.3 < z < 2.3. Our sample comprises 1056 galaxies with a mean redshift of z = 1.9, identified from the Hubble Space Telescope Wide Field Camera 3 (WFC3) grism spectroscopy in the Cosmic Assembly Near-Infrared Deep Extragalactic Survey (CANDELS) and the WFC3 Infrared Spectroscopic Parallel Survey (WISP). This sample is four times larger than previous metallicity surveys at z ~ 2, and reaches an order of magnitude lower in stellar mass (10^8 M_sun). Using stacked spectra, we find that the MZR evolves by 0.3 dex relative to z ~ 0.1. Additionally, we identify a subset of 49 galaxies with high signal-to-noise (SNR) spectra and redshifts between 1.3 < z < 1.5, where H-alpha emission is observed along with [OIII] and [OII]. With accurate measurements of SFR in these objects, we confirm the existence of a mass-metallicity-SFR (M-Z-SFR) relation at high redshifts. These galaxies show systematic differences from the local M-Z-SFR relation, which vary depending on the adopted measurement of the local relation. However, it remains difficult to ascertain whether these differences could be due to redshift evolution, as the local M-Z-SFR relation is poorly constrained at the masses and SFRs of our sample. Lastly, we reproduced our sample selection in the IllustrisTNG hydrodynamical simulation, demonstrating that our line flux limit lowers the normalization of the simulated MZR by 0.2 dex. We show that the M-Z-SFR relation in IllustrisTNG has an SFR dependence that is too steep by a factor of around three.Comment: Accepted for publication in ApJ; 41 pages, 20 figure

    Intrinsic chemical and structural inhomogeneity in lightly doped La(1-x)Sr(x)MnO(3)

    Full text link
    X-ray absorption fine structure measurements of the Sr and La K edges of the solid solution La(1-x)Sr(x)MnO(3) reveal a consistent deviation from a random distribution of Sr at the La/Sr sites for x~0.3. Local structural disorder on the cation sublattice in the low-x samples is also observed to differ in the vicinity of the La-rich and Sr-rich clusters. The local clustering and structural disorder establish an intrinsic chemical as well as structural inhomogeneity on the nanometer scale, which may provide a mechanism for the nucleation of magnetoelectronic phase separation.Comment: PDF with 4 embedded figure

    Internet-based treatment for older adults with depression and co-morbid cardiovascular disease: protocol for a randomised, double-blind, placebo controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression, cardiovascular disease (CVD) risk factors and cognitive impairment are important causes of disability and poor health outcomes. In combination they lead to an even worse prognosis. Internet or web-based interventions have been shown to deliver efficacious psychological intervention programs for depression on a large scale, yet no published studies have evaluated their impact among patients with co-existing physical conditions. The aims of this randomised controlled trial are to determine the effects of an evidence-based internet intervention program for depression on depressive mood symptoms, cognitive function and treatment adherence in patients at risk of CVD.</p> <p>Methods/Design</p> <p>This study is an internet-based, double-blind, parallel group randomised controlled trial. The trial will compare the effectiveness of online cognitive behavioural therapy with an online attention control placebo. The trial will consist of a 12-week intervention phase with a 40-week follow-up. It will be conducted in urban and rural New South Wales, Australia and will recruit a community-based sample of adults aged 45 to 75 years. Recruitment, intervention, cognitive testing and follow-up data collection will all be internet-based and automated. The primary outcome is a change in severity of depressive symptoms from baseline to three-months. Secondary outcomes are changes in cognitive function and adherence to treatment for CVD from baseline to three, six and 12-months.</p> <p>Discussion</p> <p>Prior studies of depression amongst patients with CVD have targeted those with previous vascular events and major depression. The potential for intervening earlier in these disease states appears to have significant potential and has yet to be tested. Scalable psychological programs using web-based interventions could deliver care to large numbers in a cost effective way if efficacy were proved. This study will determine the effects of a web-based intervention on depressive symptoms and adherence to treatment among patients at risk of CVD. In addition it will also precisely and reliably define the effects of the intervention upon aspects of cognitive function that are likely to be affected early in at risk individuals, using sensitive and responsive measures.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12610000085077.aspx">ACTRN12610000085077</a></p

    Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Full text link
    The following article appeared in Applied Physics Letters 103.16 (2013): 164105 and may be found at http://scitation.aip.org/content/aip/journal/apl/100/26/10.1063/1.4729825The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10−5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.This work is supported in part by the National Science Foundation (Grant Nos. AST-9978911, NSF-0847342, PHY-1102795,NSF-1151869, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052,PHY-0801708, PHY-0801712, PHY-0802575, PHY-0847342, PHY-0855299, PHY-0855525, and PHY-1205898), by the Department of Energy (Contract Nos. DE-AC03-76SF00098, DE-FG02-92ER40701, DE-FG02-94ER40823,DE-FG03-90ER40569, DE-FG03-91ER40618, and DESC0004022),by NSERC Canada (Grant Nos. SAPIN 341314 and SAPPJ 386399), and by MULTIDARK CSD2009-00064 and FPA2012-34694. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359, while SLAC is operated under Contract No. DE-AC02-76SF00515 with the United States Department of Energy

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore