2,697 research outputs found

    Sex and God #blesses: the relationship between faith and reported frequency of hooking-up among college students

    Get PDF
    Hooking-up is defined as a physically intimate encounter between two individuals whom are not romantically involved with one another (Stroke; et al., 2014). Past research has shown that students who reported that religion had a higher influence on their daily life also reported hooking-up less frequently (Simons, et al., 2009). Limited research has been conducted to measure whether priming persons with their religious beliefs- has an impact on the reported frequency of sexual health practices. This research extended the paradigm of Saroglou and Munoz-Garcia (2008) who employed a technique in which they asked participants questions about their values and personality traits in differing orders. This study sought to investigate if the placement of religious-based questions had an influence on reported frequency of sexual health practices. Findings from this study revealed that there was a negative correlation within all three question placement conditions at a .05 significance level

    Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars

    Full text link
    A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can---unlike existing models---reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.Comment: 25 pages, 3 figures in main paper, 6 extended data figures, 1 table. Published in Nature, January 2016. Please see https://youtu.be/O6HzYgP5uyc for a video description of the resul

    WireWall – Laboratory and field measurements of wave overtopping

    Get PDF
    In the UK £150bn of assets and 4 million people are at risk from coastal flooding, whilst the construction of sea wall defence schemes typically cost £10,000 per linear meter. With reductions in public funding and 3200 km of coastal defences, cost savings are required that do not cause a reduction in flood resistance. Increasingly there is a requirement to design new coastal flood defences with site specific tolerable hazard thresholds, with regard to wave overtopping during storms of varying severity. The traditional and preferred method for establishing these thresholds has always been physical modelling, but it is recognized that these can cost many 10s thousands of Euros. This is not always feasible, and coastal asset managers have long been looking for affordable methods that can be used to assess overtopping in the field. Recent advances in technology mean existing wave height sensors can now measure at the high frequencies (a few 100 Hz) required to obtain overtopping data, making this the ideal time to initiate a step-change in coastal hazard monitoring capabilities. By converting the existing wave measurement technology into an overtopping monitoring system "WireWall", we can measure the excursions of overtopping volumes and velocities in the lee of a structure. These then can be readily integrated to obtain wave-by-wave volumes and overtopping discharges (l/s/m). At Crosby in the north west of England, the 900 m sea wall will reach the end of its design life in the next 5 years. Deployments of WireWall at this site will provide site-specific data and calibrated overtopping that will feed into the design of a new sea wall. Before deployment in the field, an extensive set of tests were carried out in a 2D wave flume. Starting with known wave conditions from a buoy near the Crosby sea wall, and values from a joint probability wave and water level study, a representation of the sea wall has been tested. Extensive testing was performed to calibrate the WireWall rig. Using traditional methods of assessing wave overtopping in the flume, the WireWall measurements could be directly calibrated against the known volumes collected in the overtopping tanks. At the time of writing, analysis of the laboratory and the flume wave overtopping data is ongoing. The paper describes how WireWall works, describes the laboratory measurements, the field deployments and presents and compares the analysis from the two systems. A successful deployment of the calibrated WireWall rig at Crosby was during the winter of 2018/2019, where waves can be seen overtopping the sea wall is shown in Fig. 1

    A system for in-situ, wave-by-wave measurements of the speed and volume of coastal overtopping

    Get PDF
    Wave overtopping of sea defences poses a hazard to people and infrastructure. Rising sea levels and limited resources mean accurate prediction tools are needed to deliver cost-effective shoreline management plans. A dearth of in-situ data means that the numerical tools used for flood forecasting and coastal scheme design are based largely on data from idealised flume studies, and the resulting overtopping predictions may have orders of magnitude uncertainty for complicated structures and some environmental conditions. Furthermore, such studies usually only provide data on the total volume of overtopping water, and no data on the speed of the water. Here we present WireWall, an array of capacitance-based sensors which measure the speed and volume of overtopping water on a wave-by-wave basis. We describe the successful validation of WireWall against traditional flume methods and present results from the first trial deployments at a sea wall in the UK. WireWall results are also compared with numerical predictions based on EurOtop guidance. WireWall technology offers an approach for reliable acquisition of the data needed to develop resilient coastal protections schemes

    WireWall – a new approach to measuring coastal wave hazard

    Get PDF
    In the UK £150bn of assets and 4 million people are at risk from coastal flooding, whilst the construction of sea wall defence schemes typically cost at least £10,000 per linear meter. With reductions in public funding, rising sea level, changing storm conditions and 3200 km of coastal defences (i.e. about £3bn), cost savings are required that do not cause a reduction in flood resistance. The design of new coastal flood defences and the setting of tolerable hazard thresholds requires site-specific information of wave overtopping during storms of varying severity. By converting an existing wave measurement technology into a prototype overtopping monitoring system "WireWall", field observations of the wave-by-wave horizontal overtopping speeds and volumes were made at our case study site Crosby, in the North West of England. The new data quantify the wave overtopping conditions observed, which varied with the wind, waves and tide, allowing better understanding of how wave hazard at Crosby changes with the local conditions

    Longitudinal assessment of cognitive and psychosocial functioning after Hurricanes Katrina and Rita: Exploring disaster impact on middle-aged, older, and oldest-old adults

    Get PDF
    The authors examined the effects of Hurricanes Katrina and Rita on cognitive and psychosocial functioning in a lifespan sample of adults 6-14 months after the storms. Participants were recruited from the Louisiana Healthy Aging Study. Most were assessed during the immediate impact period and retested for this study. Analyses of pre- and post-disaster cognitive data confirmed that storm-related decrements in working memory for middle-aged and older adults observed in the immediate impact period had returned to pre-hurricane levels in the post-disaster recovery period. Middle-aged adults reported more storm-related stressors and greater levels of stress than the two older groups at both waves of testing. These results are consistent with a burden perspective on post-disaster psychological reactions. © 2012 Wiley Periodicals, Inc

    Kepler-21b: A 1.6REarth Planet Transiting the Bright Oscillating F Subgiant Star HD 179070

    Get PDF
    We present Kepler observations of the bright (V=8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R_Earth object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequencypower spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34{\pm}0.06 M{\circ} and 1.86{\pm}0.04 R{\circ} respectively, as well as yielding an age of 2.84{\pm}0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3{\sigma}) that the transit event is caused by a 1.64{\pm}0.04 R_Earth exoplanet in a 2.785755{\pm}0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of ~10 M_Earth (2-{\sigma}). HD 179070 is the brightest exoplanet host star yet discovered by Kepler.Comment: Accepted to Ap

    Transancestral mapping and genetic load in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (∼50% of these regions have multiple independent associations); these include 24 novel SLE regions (P<5 × 10-8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE
    corecore