25 research outputs found

    Aeolianite and barrier dune construction spanning the last two glacial-interglacial cycles from the southern Cape coast, South Africa

    Get PDF
    The southern Cape region of South Africa has extensive coastal aeolianites and barrier dunes. Whilst previously reported, limited knowledge of their age has precluded an understanding of their relationship with the climatic and sea-level fluctuations that have taken place during the Late Quaternary. Sedimentological and geomorphological studies combined with an optical dating programme reveal aeolianite development and barrier dune construction spanning at least the last two glacial–interglacial cycles. Aeolianite deposition has occurred on the southern Cape coast at ca 67–80, 88–90, 104–128, 160–189 and >200 ka before the present. Using this and other published data coupled with a better understanding of Late Quaternary sea-level fluctuations and palaeocoastline configurations, it is concluded that these depositional phases appear to be controlled by interglacial and subsequent interstadial sea-level high stands. These marine transgressions and regressions allowed onshore carbonate-rich sediment movement and subsequent aeolian reworking to occur at similar points in the landscape on a number of occasions. The lack of carbonates in more recent dunes (Oxygen Isotope Stages 1/2 and 4/5) is attributed not to leaching but to changes to carbonate production in the sediment source area caused by increased terrigenous material and/or changes in the balance between the warm Agulhas and nutrient-rich Benguela ocean current

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Data from: Migratory culture, population structure and stock identity in North Pacific beluga whales (Delphinapterus leucas)

    No full text
    The annual return of beluga whales, Delphinapterus leucas, to traditional seasonal locations across the Arctic may involve migratory culture, while the convergence of discrete summering aggregations on common wintering grounds may facilitate outbreeding. Natal philopatry and cultural inheritance, however, has been difficult to assess as earlier studies were of too short a duration, while genetic analyses of breeding patterns, especially across the beluga's Pacific range, have been hampered by inadequate sampling and sparse information on wintering areas. Using a much expanded sample and genetic marker set comprising 1,647 whales, spanning more than two decades and encompassing all major coastal summering aggregations in the Pacific Ocean, we found evolutionary-level divergence among three geographic regions: the Gulf of Alaska, the Bering-Chukchi-Beaufort Seas, and the Sea of Okhotsk (Φst=0.11-0.32, Rst=0.09-0.13), and likely demographic independence of (Fst-mtDNA=0.02-0.66), and in many cases limited gene flow (Fst-nDNA=0.0-0.02; K=5-6) among, summering groups within regions. Assignment tests identified few immigrants within summering aggregations, linked migrating groups to specific summering areas, and found that some migratory corridors comprise whales from multiple subpopulations (PBAYES=0.31:0.69). Further, dispersal is male-biased and substantial numbers of closely related whales congregate together at coastal summering areas. Stable patterns of heterogeneity between areas and consistently high proportions (~20%) of close kin (including parent-offspring) sampled up to 20 years apart within areas (G=0.2-2.9, p>0.5) is the first direct evidence of natal philopatry to migration destinations in belugas. Using recent satellite telemetry findings on belugas we found that the spatial proximity of winter ranges has a greater influence on the degree of both individual and genetic exchange than summer ranges (rwinter-Fst-mtDNA=0.9, rsummer-Fst-nDNA=0.1). These findings indicate widespread natal philopatry to summering aggregation and entire migratory circuits, and provide compelling evidence that migratory culture and kinship helps maintain demographically discrete beluga stocks that can overlap in time and space

    Data from: Migratory culture, population structure and stock identity in North Pacific beluga whales (Delphinapterus leucas)

    No full text
    The annual return of beluga whales, Delphinapterus leucas, to traditional seasonal locations across the Arctic may involve migratory culture, while the convergence of discrete summering aggregations on common wintering grounds may facilitate outbreeding. Natal philopatry and cultural inheritance, however, has been difficult to assess as earlier studies were of too short a duration, while genetic analyses of breeding patterns, especially across the beluga's Pacific range, have been hampered by inadequate sampling and sparse information on wintering areas. Using a much expanded sample and genetic marker set comprising 1,647 whales, spanning more than two decades and encompassing all major coastal summering aggregations in the Pacific Ocean, we found evolutionary-level divergence among three geographic regions: the Gulf of Alaska, the Bering-Chukchi-Beaufort Seas, and the Sea of Okhotsk (Φst=0.11-0.32, Rst=0.09-0.13), and likely demographic independence of (Fst-mtDNA=0.02-0.66), and in many cases limited gene flow (Fst-nDNA=0.0-0.02; K=5-6) among, summering groups within regions. Assignment tests identified few immigrants within summering aggregations, linked migrating groups to specific summering areas, and found that some migratory corridors comprise whales from multiple subpopulations (PBAYES=0.31:0.69). Further, dispersal is male-biased and substantial numbers of closely related whales congregate together at coastal summering areas. Stable patterns of heterogeneity between areas and consistently high proportions (~20%) of close kin (including parent-offspring) sampled up to 20 years apart within areas (G=0.2-2.9, p>0.5) is the first direct evidence of natal philopatry to migration destinations in belugas. Using recent satellite telemetry findings on belugas we found that the spatial proximity of winter ranges has a greater influence on the degree of both individual and genetic exchange than summer ranges (rwinter-Fst-mtDNA=0.9, rsummer-Fst-nDNA=0.1). These findings indicate widespread natal philopatry to summering aggregation and entire migratory circuits, and provide compelling evidence that migratory culture and kinship helps maintain demographically discrete beluga stocks that can overlap in time and space

    Migratory culture, population structure and stock identity in North Pacific beluga whales <i>(Delphinapterus leucas)</i>

    No full text
    <div><p>The annual return of beluga whales, <i>Delphinapterus leucas</i>, to traditional seasonal locations across the Arctic may involve migratory culture, while the convergence of discrete summering aggregations on common wintering grounds may facilitate outbreeding. Natal philopatry and cultural inheritance, however, has been difficult to assess as earlier studies were of too short a duration, while genetic analyses of breeding patterns, especially across the beluga’s Pacific range, have been hampered by inadequate sampling and sparse information on wintering areas. Using a much expanded sample and genetic marker set comprising 1,647 whales, spanning more than two decades and encompassing all major coastal summering aggregations in the Pacific Ocean, we found evolutionary-level divergence among three geographic regions: the Gulf of Alaska, the Bering-Chukchi-Beaufort Seas, and the Sea of Okhotsk (<i>Φ</i><sub>st</sub> = 0.11–0.32, <i>R</i><sub>st</sub> = 0.09–0.13), and likely demographic independence of (<i>F</i><sub>st-mtDNA</sub> = 0.02–0.66), and in many cases limited gene flow (<i>F</i><sub>st-nDNA</sub> = 0.0–0.02; <i>K</i> = 5–6) among, summering groups within regions. Assignment tests identified few immigrants within summering aggregations, linked migrating groups to specific summering areas, and found that some migratory corridors comprise whales from multiple subpopulations (P<sub>BAYES</sub> = 0.31:0.69). Further, dispersal is male-biased and substantial numbers of closely related whales congregate together at coastal summering areas. Stable patterns of heterogeneity between areas and consistently high proportions (~20%) of close kin (including parent-offspring) sampled up to 20 years apart within areas (<i>G</i> = 0.2–2.9, <i>p</i>>0.5) is the first direct evidence of natal philopatry to migration destinations in belugas. Using recent satellite telemetry findings on belugas we found that the spatial proximity of winter ranges has a greater influence on the degree of both individual and genetic exchange than summer ranges (r<sub>winter</sub>-<i>F</i><sub>st-mtDNA</sub> = 0.9, r<sub>summer</sub>-<i>F</i><sub>st-nDNA</sub> = 0.1). These findings indicate widespread natal philopatry to summering aggregation and entire migratory circuits, and provide compelling evidence that migratory culture and kinship helps maintain demographically discrete beluga stocks that can overlap in time and space.</p></div

    The proportion of pairwise genealogical relationships estimated for beluga whales sampled within and between years across two decades near Kasegaluk Lagoon, Alaska.

    No full text
    <p>Maximum likelihood estimates of four relationship categories were estimated from genotypic data using the program ml-relate. The stacked bars represent the proportions of distantly/unrelated individuals to closely related individuals (i.e., parent-offspring, full-sib and half-sib or equivalent) for a subset of the 20-year data set comprising the first three years (1988, 1993, 1994) and the last three years (2005, 2006, 2007).</p

    Migratory culture, population structure and stock identity in North Pacific beluga whales <i>(Delphinapterus leucas)</i> - Table 3

    No full text
    <p>Population differentiation within mitochondrial DNA (A) and across eight microsatellite loci (B) in Pacific beluga whales. Values for the frequency-based statistic, F<sub>st</sub>, are below the diagonal. Values for the distance-based statistic, Φ<sub>st</sub> (mtDNA) and R<sub>st</sub> (nDNA), are above the diagonal. Corresponding <i>p</i>-values for homogeneity tests, based on 50,000 permutations, are represented by the following shading patterns: dark grey: p≤0.01, light grey: 0.010.05. Only strata with a sample size of n≥10 are reported, and the Beaufort Sea stratum is the Mackenzie and Point Hope strata combined (see text). Reported estimates of heterogeneity comprise the roughly two decade period from 1988–2010. See Table A and B in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0194201#pone.0194201.s012" target="_blank">S7 Table</a> for more details on temporal patterns of heterogeneity.</p

    Genetic differentiation (<i>F</i><sub>st</sub>) between post-dispersal age cohorts of beluga whales from the eastern Chukchi (Kasegaluk Lagoon) and the Beaufort Seas (Mackenzie-Amundsen).

    No full text
    <p>Pairwise estimates for mtDNA are below the diagonal and for microsatellites above the diagonal. Analyses were conducted on all adults (A) and on all large, and presumably older, adults (B). Sample sizes (n) for the mtDNA comparisons are in column 2 and for microsatellites in row 3. Estimates of age were based on the number of growth layer groups (GLGs) in sectioned teeth.</p

    The probability distribution of population proportions of groups of beluga whales sampled on northbound migration in spring.

    No full text
    <p> Stock-mixture analysis was conducted in Bayes with the eastern Beaufort Sea (blue) and the eastern Chukchi Sea (red) as baseline populations and the migrating groups as the potential ‘mixtures’. The ordinate axis indicates the number of runs.</p
    corecore