76 research outputs found
Expert-guided Responses: Validation of inferences based on response processes
En este artículo se presenta un estudio cuantitativo cuyo objetivo fue poner a prueba un nuevo método para recabar evidencias sobre los procesos de respuesta utilizados por los examinados en pruebas educativas. Como antecedente fundamental, el estudio parte de la necesidad de contar con métodos sistemáticos para mejorar la calidad de los instrumentos que se utilizan en la evaluación educativa. Se comparó el método tradicional, de los reportes verbales, con el método de la Respuesta Guiada por el Experto con respecto a su idoneidad para recabar evidencias sobre la interpretación de las puntuaciones en una prueba educativa. Para esto, se seleccionó una muestra a conveniencia de 17 estudiantes de primer ingreso de la Universidad de Costa Rica y se le aplicó una entrevista semiestructurada a cada uno, en las cuales debían resolver ítems de razonamiento en voz alta empleando el método tradicional de reportes verbales o el método de la Respuesta Guiada por el Experto. Las entrevistas fueron codificadas por un grupo de expertos y se calculó un coeficente de acuerdo entre ellos. Con el método tradicional se obtuvo un coeficiente kappa de Fleiss de 0.22, mientras que, con el método de la Respuesta Guiada por el Experto, este fue de 0.40. Se concluye con las ventajas de utilizar este método para desarrollar instrumentos de evaluación educativa que representen adecuadamente las habilidades, destrezas, competencias y conocimientos de los estudiantes.This article presents a quantitative study whose objective was to test a new method to collect evidence about the response processes used by examinees in educational tests. As a fundamental precedent, the study starts from the need to have systematic methods to improve the quality of the instruments used in educational assessment. A traditional method of verbal reports was compared to the Expert-guided Responses method regarding its suitability to gather evidence for scores interpretation in an educational test. For this purpose, a convenience sample of 17 first-year students from the University of Costa Rica was selected and a semistructured interview was applied to each, in which they had to solve reasoning items aloud using the traditional method of verbal reports, or the Expert-guided Responses method. The interviews were coded by a group of raters, and a coefficient of agreement between them was calculated. With the traditional method, a Fleiss kappa coefficient of 0.22 was obtained, whereas with the Expert-guided Responses method it was 0.40. The article concludes with the advantages of using the new method to develop educational assessment tools that adequately represent the students’ abilities, skills, proficiencies, and knowledge.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Sociales::Instituto de Investigaciones Psicológicas (IIP
A Validation of a Reading Comprehension Test for University Students
El objetivo del presente artículo es brindar evidencias de validez y de confiabilidad sobre una prueba nueva para medir el nivelde comprensión lectora de estudiantes universitarios. Para ello se empleó un diseño de investigación observacional y transversal,mediante la cual se aplicó la prueba a un grupo de 244 estudiantes de primer ingreso a una carrera universitaria. Los resultadosfueron analizados con base en la Teoría Clásica de los Test y en el modelo de Rasch, así como también se estimó el coeficiente decorrelación de Pearson entre las puntuaciones en la prueba y un curso universitario de primer año de carrera. El principal hallazgode este estudio es la creación de una prueba de 44 ítems que permite generar puntuaciones con una confiabilidad de 0,74 y quepresentan una correlación estadísticamente significativa (p < 0,000) de 0,21 [0,09, 0,33] con las notas de estudiantes en un cursode carrera de primer año. Con base en los análisis efectuados, se concluye que la prueba podría ser útil para detectar estudiantesde primer ingreso a la educación superior que podrían presentar problemas de comprensión lectora y, por ende, ver disminuidosu rendimiento académico. En este sentido, la prueba podría servir para propósitos de screening, es decir, para coadyuvar en laelaboración de planes remediales, implementación de intervenciones educativas y desarrollo de unidades didácticas orientadas alfortalecimiento de la comprensión lectora de los(as) estudiantes universitarios de primer ingreso.The goal of this article is to provide evidence as to the validity and reliability of a new Reading Comprehension test aimed at
college students which is based on an observational and cross-cutting research design. The test was taken by 244 students in the first
year of their major. The results were analyzed according to the Classical Test Theory, the Rasch Model and a Pearson correlation
coefficient to compare the scores obtained with first year courses taken by students for their Major. As a result of the study, a 44-
item was elaborated with a reliability scale of 0.74 and a statistically significant correlation scores of 0.21 [0.09, 0.33] (p < 0.000) for
student grades in first-year courses. It can be concluded that this test could be useful to detect reading comprehension difficulties
among first-year university students which could potentially negatively impact their academic performance. The test could also
serve as a screening tool in the development of remedial programs to strengthen reading comprehension among these students.Universidad de Costa Rica/[]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Sociales::Instituto de Investigaciones Psicológicas (IIP
Validation of a Four-Strategies Model for Solving Reasoning Items in a Standardized Selection Test
La premisa de este estudio consiste en que un modelo cognitivo permite a las personas mejorar el desempeño en la resolución de preguntas de una prueba estandarizada donde el uso de estrategias tiene un papel crucial. El propósito de la investigación fue validar un modelo cognitivo con cuatro estrategias definidas por jueces expertos con base en los procesos de respuesta que subyacen a ítems de la Prueba de Aptitud Académica de la Universidad de Costa Rica (UCR). Se realizaron ocho entrevistas semiestructuradas a estudiantes de la UCR, quienes estaban cursando el primer año en esta institución y se aplicaron las técnicas de reporte verbal para obtener evidencias de los procesos de respuesta de los ítems. Se analizaron los reportes para comprobar la correspondencia entre el marco de las estrategias definidas previamente por jueces expertos y las respuestas dadas por los participantes. Los resultados indicaron que los participantes siguieron las estrategias propuestas para la solución de las situaciones planteadas por los jueces; por tanto, los ítems son indicadores de los procesos subyacentes a estas estrategias. Estos hallazgos abren la posibilidad de implementar investigaciones con atributos presentes en cada estrategia propuesta de este estudio, que posibiliten predecir las puntuaciones de la prueba en el rendimiento académico en la UCR.The premise of this study is that a cognitive model can increase students’ performance for solving items on a standardized test, where strategies play a crucial role. The purpose of the study is to validate a cognitive model with four strategies defined by expert judges based on the response processes that underlie the items of the University of Costa Rica (UCR) Academic Aptitude Test. Eight semi-structured interviews were conducted with first-year students at UCR and the techniques of verbal reporting were applied to gather evidence of the items’ response processes. The reports were analyzed to verify the correspondence between the framework of the strategies previously defined by expert judges and the answers given by the participants. In light of the results, it was concluded that the participants followed the proposed strategies for solving the situations posed, and, therefore, the items are indicators of the processes underlying these strategies. The results open the possibility of implementing research
with attributes present in each strategy proposed in this study, which will allow predicting test scores in academic performance at the UCR.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Sociales::Instituto de Investigaciones Psicológicas (IIP
Numerical loop quantum cosmology: an overview
A brief review of various numerical techniques used in loop quantum cosmology
and results is presented. These include the way extensive numerical simulations
shed insights on the resolution of classical singularities, resulting in the
key prediction of the bounce at the Planck scale in different models, and the
numerical methods used to analyze the properties of the quantum difference
operator and the von Neumann stability issues. Using the quantization of a
massless scalar field in an isotropic spacetime as a template, an attempt is
made to highlight the complementarity of different methods to gain
understanding of the new physics emerging from the quantum theory. Open
directions which need to be explored with more refined numerical methods are
discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and
Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
Inflation from non-minimally coupled scalar field in loop quantum cosmology
The FRW model with non-minimally coupled massive scalar field has been
investigated in LQC framework. Considered form of the potential and coupling
allows applications to Higgs driven inflation. Out of two frames used in the
literature to describe such systems: Jordan and Einstein frame, the latter one
is applied. Specifically, we explore the idea of the Einstein frame being the
natural 'environment' for quantization and the Jordan picture having an
emergent nature. The resulting dynamics qualitatively modifies the standard
bounce paradigm in LQC in two ways: (i) the bounce point is no longer marked by
critical matter energy density, (ii) the Planck scale physics features the
'mexican hat' trajectory with two consecutive bounces and rapid expansion and
recollapse between them. Furthermore, for physically viable coupling strength
and initial data the subsequent inflation exceeds 60 e-foldings.Comment: Clarity improved. Replaced with revised version accepted in JCA
Loop Quantum Cosmology: A Status Report
The goal of this article is to provide an overview of the current state of
the art in loop quantum cosmology for three sets of audiences: young
researchers interested in entering this area; the quantum gravity community in
general; and, cosmologists who wish to apply loop quantum cosmology to probe
modifications in the standard paradigm of the early universe. An effort has
been made to streamline the material so that, as described at the end of
section I, each of these communities can read only the sections they are most
interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical
and Quantum Gravity. Typos corrected, clarifications and references adde
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
- …