70 research outputs found
Predicting dengue fever outbreaks in French Guiana using climate indicators
Background Dengue fever epidemic dynamics are driven by complex interactions between hosts, vectors and viruses. Associations between climate and dengue have been studied around the world, but the results have shown that the impact of the climate can vary widely from one study site to another. In French Guiana, climate-based models are not available to assist in developing an early warning system. This study aims to evaluate the potential of using oceanic and atmospheric conditions to help predict dengue fever outbreaks in French Guiana. Methodology/Principal Findings Lagged correlations and composite analyses were performed to identify the climatic conditions that characterized a typical epidemic year and to define the best indices for predicting dengue fever outbreaks during the period 1991-2013. A logistic regression was then performed to build a forecast model. We demonstrate that a model based on summer Equatorial Pacific Ocean sea surface temperatures and Azores High sea-level pressure had predictive value and was able to predict 80% of the outbreaks while incorrectly predicting only 15% of the non-epidemic years. Predictions for 2014-2015 were consistent with the observed non-epidemic conditions, and an outbreak in early 2016 was predicted. Conclusions/Significance These findings indicate that outbreak resurgence can be modeled using a simple combination of climate indicators. This might be useful for anticipating public health actions to mitigate the effects of major outbreaks, particularly in areas where resources are limited and medical infrastructures are generally insufficient
Use of Plasmodium falciparum culture-adapted field isolates for in vitro exflagellation-blocking assay
International audienceA major requirement for malaria elimination is the development of transmission-blocking interventions. In vitro transmission-blocking bioassays currently mostly rely on the use of very few Plasmodium falciparum reference laboratory strains isolated decades ago. To fill a piece of the gap between laboratory experimental models and natural systems, the purpose of this work was to determine if culture-adapted field isolates of P. falciparum are suitable for in vitro transmission-blocking bioassays targeting functional maturity of male gametocytes: exflagellation. Plasmodium falciparum isolates were adapted to in vitro culture before being used for in vitro gametocyte production. Maturation was assessed by microscopic observation of gametocyte morphology over time of culture and the functional viability of male gametocytes was assessed by microscopic counting of exflagellating gametocytes. Suitability for in vitro exflagellation-blocking bioassays was determined using dihydroartemisinin and methylene blue. In vitro gametocyte production was achieved using two isolates from French Guiana and two isolates from Cambodia. Functional maturity of male gametocytes was assessed by exflagellation observations and all four isolates could be used in exflagellation-blocking bioassays with adequate response to methylene blue and dihydroartemisinin. This work shows that in vitro culture-adapted P. falciparum field isolates of different genetic background, from South America and Southeast Asia, can successfully be used for bioassays targeting the male gametocyte to gamete transition, exflagellation
Reduced in vitro susceptibility to artemisinin derivatives associated with multi-resistance in a traveller returning from South-East Asia
Decreased in vitro susceptibility to dihydroartemisinin (21.2 nM) and artesunate (16.3 nM) associated with decreased susceptibility or resistance to quinine (1131 nM), mefloquine (166 nM), lumefantrine (114 nM), pyronaridine (70.5 nM) and piperaquine (91.1 nM) is reported in a patient returning from South-East Asia after trekking along the Mekong from the south of Laos to the north of Thailand. Decreased in vitro susceptibility to artemisinin derivatives did not appear to be mediated by the number of copies of pfmdr1 or pfATPase6, pfcrt, pfmdr1 or pfmrp polymorphism. The high IC50 to mefloquine of this Asian isolate was not associated with pfmdr1 copy number. Pfnhe-1 microsatellite ms4760 showed a profile 7 (ms4760-7) with three repeats of DNNND and one repeat of DDDNHNDNHNN, which is associated with high quinine reduced susceptibility. The patient recovered in three days without relapse after treatment with the association of quinine and doxycycline. Decreased in vitro susceptibility to quinine and the delayed effect of doxycycline may both have contributed to the delayed parasite clearance time, D4 (0.5%) and D7 (0.004%). The in vitro data, with IC50 for dihydroartemisinin and artesunate were up to ten times those of the reference clone W2, which suggests that this isolate may be resistant to artemisinin derivatives, associated with a decreased susceptibility to quinine
Establishment of one-step SYBR green-based real time-PCR assay for rapid detection and quantification of chikungunya virus infection
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus and one of the prevalent re-emerging arbovirus in tropical and subtropical regions of Asia, Africa, and Central and South America. It produces a spectrum of illness ranging from inapparent infection to moderate febrile illness as well as severe arthralgia or arthritis affecting multiple joints. In this study, a quantitative, one-step real-time SYBR Green-based RT-PCR system for the non-structural protein 2 (nsP2) of CHIKV that can quantify a wide range of viral RNA concentrations was developed. Comparisons between the conventional semi-quantitative RT-PCR assay, immunofluorescence detection method and the one-step SYBR Green-based RT-PCR assay in the detection of CHIKV infection revealed much rapid and increase sensitivity of the latter method. Furthermore, this newly developed assay was validated by in vitro experiments in which ribavirin, a well-known RNA virus inhibitor, showed a dose-dependent inhibition of virus replication on cells that was assessed by viral infectivity and viral RNA production. Our results demonstrate the potential of this newly developed one-step SYBR Green I-based RT-PCR assay may be a useful tool in rapid detection of CHIKV and monitoring the extent of viral replication possibly in patients' samples
Sentinel network for monitoring in vitro susceptibility of Plasmodium falciparum to antimalarial drugs in Colombia: a proof of concept
Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.PAHO [057-1-3144141]; COLCIENCIAS [ID 2229-405-20319]info:eu-repo/semantics/publishedVersio
Complex polymorphisms in the plasmodium falciparum Multidrug Resistance Protein 2 Gene and Its Contribution to Antimalarial Response
Complex Polymorphisms in the Plasmodium falciparum Multidrug Resistance Protein 2 Gene and Its Contribution to Antimalarial ResponsePlasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.This work was supported by project grants from the Swedish Development Cooperation Agency, Department for Research Cooperation (SWE 2007-174 and SWE-2009-165). M.I.V. and N.S.O. are recipients of post-doctoral fellowship from Fundacao para a Ciencia e Tecnologia (FCT)/Ministerio da Ciencia e Ensino Superior, Portugal, MCES (SFRH/BPD/76614/2011 and UMINHO/BPD/15/2014, respectively). The Shoklo Malaria Research Unit is part of the Mahidol Oxford University Tropical Medicine Research Unit and is supported by the Wellcome Trust of Great Britain
Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease
During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS) structures, modifications in the cerebrospinal fluid (CSF) composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1), a protein reported with anti-viral effects, presente
Absence of association between pyronaridine in vitro responses and polymorphisms in genes involved in quinoline resistance in Plasmodium falciparum
<p>Abstract</p> <p>Background</p> <p>The aim of the present work was to assess the <it>in vitro </it>cross-resistance of pyronaridine with other quinoline drugs, artesunate and several other commonly used anti-malarials and to evaluate whether decreased susceptibility to pyronaridine could be associated with genetic polymorphisms in genes involved in reduced quinoline susceptibility, such as <it>pfcrt</it>, <it>pfmdr1</it>, <it>pfmrp </it>and <it>pfnhe</it>.</p> <p>Methods</p> <p>The <it>in vitro </it>chemosusceptibility profiles of 23 strains of <it>Plasmodium falciparum </it>were analysed by the standard 42-hour <sup>3</sup>H-hypoxanthine uptake inhibition method for pyronaridine, artesunate, chloroquine, monodesethylamodiaquine, quinine, mefloquine, lumefantrine, atovaquone, pyrimethamine and doxycycline. Genotypes were assessed for <it>pfcrt</it>, <it>pfmdr1</it>, <it>pfnhe-1 </it>and <it>pfmrp </it>genes.</p> <p>Results</p> <p>The IC<sub>50 </sub>values for pyronaridine ranged from 15 to 49 nM (geometric mean = 23.1 nM). A significant positive correlation was found between responses to pyronaridine and responses to artesunate (<it>r<sup>2 </sup></it>= 0.20; <it>P </it>= 0.0317) but too low to suggest cross-resistance. No significant correlation was found between pyronaridine IC<sub>50 </sub>and responses to other anti-malarials. Significant associations were not found between pyronaridine IC<sub>50 </sub>and polymorphisms in <it>pfcrt</it>, <it>pfmdr1</it>, <it>pfmrp </it>or <it>pfnhe-1</it>.</p> <p>Conclusion</p> <p>There was an absence of cross-resistance between pyronaridine and quinolines, and the IC<sub>50 </sub>values for pyronaridine were found to be unrelated to mutations in the transport protein genes <it>pfcrt</it>, <it>pfmdr1</it>, <it>pfmrp </it>or <it>pfnhe-1</it>, known to be involved in quinoline resistance. These results confirm the interest and the efficacy of the use of a combination of pyronaridine and artesunate in areas in which parasites are resistant to quinolines.</p
Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach
<p>Abstract</p> <p>Background</p> <p>Over its life cycle, the <it>Plasmodium falciparum </it>parasite is exposed to different environmental conditions, particularly to variations in O<sub>2 </sub>pressure. For example, the parasite circulates in human venous blood at 5% O<sub>2 </sub>pressure and in arterial blood, particularly in the lungs, at 13% O<sub>2 </sub>pressure. Moreover, the parasite is exposed to 21% O<sub>2 </sub>levels in the salivary glands of mosquitoes.</p> <p>Methods</p> <p>To study the metabolic adaptation of <it>P. falciparum </it>to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken.</p> <p>Results</p> <p>Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response.</p> <p>Conclusions</p> <p>These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of <it>P. falciparum</it>. This study provides a better understanding of the adaptive capabilities of <it>P. falciparum </it>to environmental changes and may lead to the development of novel therapeutic targets.</p
- …