870 research outputs found

    Bottom-Up Reconstruction Scenarios for (un)constrained MSSM Parameters at the LHC

    Full text link
    We consider some specific inverse problem or "bottom-up" reconstruction strategies at the LHC for both general and constrained MSSM parameters, starting from a plausibly limited set of sparticle identification and mass measurements, using mainly gluino/squark cascade decays, plus eventually the lightest Higgs boson mass. For the three naturally separated sectors of: gaugino/Higgsino, squark/slepton, and Higgs parameters, we examine different step-by-step algorithms based on rather simple, entirely analytical, inverted relations between masses and basic MSSM parameters. This includes also reasonably good approximations of some of the relevant radiative correction calculations. We distinguish the constraints obtained for a general MSSM from those obtained with universality assumptions in the three different sectors. Our results are compared at different stages with the determination from more standard "top-down" fit of models to data, and finally combined into a global determination of all the relevant parameters. Our approach gives complementary information to more conventional analysis, and is not restricted to the specific LHC measurement specificities. In addition, the bottom-up renormalization group evolution of general MSSM parameters, being an important ingredient in this framework, is illustrated as a new publicly available option of the MSSM spectrum calculation code "SuSpect".Comment: 52 pages, 22 figures. Slight reorganization of sections, a few more results for the neutralino sector, one appendix added on neutralino sector calculation details. Version to appear in Phys. Rev.

    Analysis of enhanced tan(beta) corrections in MFV GUT scenarios

    Full text link
    We analyse a minimal supersymmetric standard model (MSSM) taking a minimal flavour violation (MFV) structure at the GUT scale. We evaluate the parameters at the electroweak scale taking into account the full flavour structure in the evolution of the renormalization group equations. We concentrate mainly on the decay Bs -> mu mu and its correlations with other observables like b -> s gamma, b -> s l l, Delta M_Bs and the anomalous magnetic moment of the muon. We restrict our analysis to the regions in parameter space consistent with the dark matter constraints. We find that the BR(Bs -> mu mu) can exceed the current experimental limit in the regions of parameter space which are allowed by all other constraints thus providing an additional bound on supersymmetric parameters. This holds even in the constrained MSSM. Assuming an hypothetical measurement of BR(Bs -> mu mu) ~ 10^-7 we analyse the predicted MSSM spectrum and flavour violating decay modes of supersymmetric particles which are found to be small.Comment: 47 pages, 16 figures (best viewed printed or in pdf format), updated lattice inputs used, version submitted to PR

    On non-universal Goldstino couplings to matter

    Full text link
    Using the constrained superfields formalism to describe the interactions of a light goldstino to matter fields in supersymmetric models, we identify generalised, higher-order holomorphic superfield constraints that project out the superpartners and capture the non-universal couplings of the goldstino to matter fields. These arise from microscopic theories in which heavy superpartners masses are of the order of the supersymmetry breaking scale (\sqrt f). In the decoupling limit of infinite superpartners masses, these constraints reduce to the familiar, lower-order universal constraints discussed recently, that describe the universal goldstino-matter fields couplings, suppressed by inverse powers of \sqrt f. We initiate the study of the couplings of the Standard Model (SM) fields to goldstino in the constrained superfields formalism.Comment: 28 pages; one comment adde

    Supersymmetric Musings on the Predictivity of Family Symmetries

    Full text link
    We discuss the predictivity of family symmetries for the soft supersymmetry breaking parameters in the framework of supergravity. We show that unknown details of the messenger sector and the supersymmetry breaking hidden sector enter into the soft parameters, making it difficult to obtain robust predictions. We find that there are specific choices of messenger fields which can improve the predictivity for the soft parameters.Comment: 20 pages, 5 figure

    On the two-loop sbottom corrections to the neutral Higgs boson masses in the MSSM

    Full text link
    We compute the O(ab*as) two-loop corrections to the neutral Higgs boson masses in the Minimal Supersymmetric Standard Model, using the effective potential approach. Such corrections can be important in the region of parameter space corresponding to tan(beta)>>1 and sizeable mu. In spite of the formal analogy with the O(at*as) corrections, there are important differences, since the dominant effects are controlled by the sbottom-Higgs scalar couplings. We propose a convenient renormalization scheme that avoids unphysically large threshold effects associated with the bottom mass, and absorbs the bulk of the O(ab*as + ab*at) corrections into the one-loop expression. We give general explicit formulae for the O(ab*as) corrections to the neutral Higgs boson mass matrix. We also discuss the importance of the O(ab^2) corrections and derive a formula for their contribution to mh in a simple limiting case.Comment: 14 pages, 4 figures. Version to appear in Nucl. Phys.

    Determining the Structure of Supersymmetry-Breaking with Renormalization Group Invariants

    Full text link
    If collider experiments demonstrate that the Minimal Supersymmetric Standard Model (MSSM) is a good description of nature at the weak scale, the experimental priority will be the precise determination of superpartner masses. These masses are governed by the weak scale values of the soft supersymmetry (SUSY)-breaking parameters, which are in turn highly dependent on the SUSY-breaking scheme present at high scales. It is therefore of great interest to find patterns in the soft parameters that can distinguish different high scale SUSY-breaking structures, identify the scale at which the breaking is communicated to the visible sector, and determine the soft breaking parameters at that scale. In this work, we demonstrate that 1-loop Renormalization Group~(RG) invariant quantities present in the MSSM may be used to answer each of these questions. We apply our method first to generic flavor-blind models of SUSY-breaking, and then examine in detail the subset of these models described by General Gauge Mediation and the constrained MSSM with non-universal Higgs masses. As RG invariance generally does not hold beyond leading-log order, we investigate the magnitude and direction of the 2-loop corrections. We find that with superpartners at the TeV scale, these 2-loop effects are either negligible, or they are of the order of optimistic experimental uncertainties and have definite signs, which allows them to be easily accounted for in the overall uncertainty.Comment: v2 -- references added, version to be published in PRD; 40 page

    Associated production of a light Higgs boson and a chargino pair in the MSSM at linear colliders

    Get PDF
    In the Minimal Supersymmetric Standard Model (MSSM), we study the light Higgs-boson radiation off a light-chargino pair in the process e+e- -> h chi^+ chi^- at linear colliders with \sqs=500 GeV. We analyze cross sections in the regions of the MSSM parameter space where the process can not proceed via on-shell production and subsequent decay of either heavier charginos or the pseudoscalar Higgs boson A. Cross sections up to a few fb's are allowed, according to present experimental limits on the Higgs-boson, chargino and sneutrino masses. We also show how a measurement of the process production rate could provide a determination of the Higgs-boson couplings to charginos.Comment: 26 pages, 9 figures; figure misplacement fixed; to appear in Eur.Phys.J.

    String-derived D4 flavor symmetry and phenomenological implications

    Get PDF
    In this paper we show how some flavor symmetries may be derived from the heterotic string, when compactified on a 6D orbifold. In the body of the paper we focus on the D4D_4 family symmetry, recently obtained in Z3×Z2Z_3 \times Z_2 orbifold constructions. We show how this flavor symmetry constrains fermion masses, as well as the soft SUSY breaking mass terms. Flavor symmetry breaking can generate the hierarchy of fermion masses and at the same time the flavor symmetry suppresses large flavor changing neutral current processes.Comment: 17 pages, no figur

    Phenomenology of a Fluxed MSSM

    Full text link
    We analyze the phenomenology of a set of minimal supersymmetric standard model (MSSM) soft terms inspired by flux-induced supersymmetry (SUSY)-breaking in Type IIB string orientifolds. The scheme is extremely constrained with essentially only two free mass parameters: a parameter M, which sets the scale of soft terms, and the mu parameter. After imposing consistent radiative electro-weak symmetry breaking (EWSB) the model depends upon one mass parameter (say, M). In spite of being so constrained one finds consistency with EWSB conditions. We demonstrate that those conditions have two solutions for mu<0, and none for mu>0. The parameter tan beta results as a prediction and is approximately 3-5 for one solution, and 25-40 for the other, depending upon M and the top mass. We examine further constraints on the model coming from b->s gamma, the muon g-2, Higgs mass limits and WMAP constraints on dark matter. The MSSM spectrum is predicted in terms of the single free parameter M. The low tan beta branch is consistent with a relatively light spectrum although it is compatible with standard cosmology only if the lightest neutralino is unstable. The high tan beta branch is compatible with all phenomenological constraints, but has quite a heavy spectrum. We argue that the fine-tuning associated to this heavy spectrum would be substantially ameliorated if an additional relationship mu=-2M were present in the underlying theory.Comment: 18 pages, minor revision

    Phenomenological implications of light stop and higgsinos

    Get PDF
    We examine the phenomenological implications of light t~R\tilde{t}_R and higgsinos in the Minimal Supersymmetric Standard Model, assuming tan2β<mt/mb\tan^2 \beta < m_t / m_b and heavy t~L\tilde{t}_L and gauginos. In this simplified setting, we study the contributions to ΔmBd\Delta m_{B_d}, ϵK\epsilon_K, BR(bsγ)BR(b \rightarrow s \gamma), RbΓ(Zbb)/Γ(Zhadrons)R_b \equiv \Gamma (Z \rightarrow b \overline{b}) / \Gamma ( Z \to {\rm hadrons}), BR(tbW)BR(t \to b W), and their interplay.Comment: plain LATEX, 6 figures, 23 A4 page
    corecore