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In this paper we show how some flavor symmetries may be derived from the heterotic string, when
compactified on a 6D orbifold. In the body of the paper we focus on the D4 family symmetry, recently
obtained in Z3 � Z2 orbifold constructions. We show how this flavor symmetry constrains fermion
masses, as well as the soft SUSY breaking mass terms. Flavor symmetry breaking can generate the
hierarchy of fermion masses and at the same time the flavor symmetry suppresses large flavor changing
neutral current processes.
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I. INTRODUCTION

Fermion masses and mixing angles are the precision low
energy data which will test any new physics beyond the
standard model. Quarks and leptons come in three flavors
(or families) with a distinct hierarchy of masses for
charged fermions; with the third family heavier than the
second, which is heavier than the first. Moreover the mix-
ing angles evident in charge current electroweak processes
are small and favor nearest neighbor mixing with respect to
family number. In the neutrino sector, the situation is not as
clear. There are possibly more than three light neutrinos.
Their masses may be Majorana or Dirac. Even if one
assumes just three light Majorana neutrinos, a normal or
inverted hierarchy is possible. Finally the leptonic mixing
angles, so-called Pontecorvo-Maki-Nakagawa-Sakita
(PMNS) angles, (analogs of the Cabibbo-Kobayashi-
Maskawa (CKM) mixing for quarks) are large, with maxi-
mal mixing (� 45�) between ��–�� and large mixing (�
30�) between �e–���; ���. Within the context of the see-
saw mechanism, this may be generated via large mixing in
the Dirac neutrino mass matrix or in the right-handed
Majorana mass matrix [1]. However Ref. [2] showed that
bilarge neutrino mixing may also be obtained with com-
pletely hierarchical Dirac and Majorana neutrino mass
matrices. In a recent paper this analysis was extended to
supersymmetric SO�10� [3].

Understanding the origin of fermion flavor structure, i.e.
fermion masses and mixing angles, is one of the important
issues in particle physics. In field-theoretical model build-
ing, one often assumes certain types of flavor symmetries,
which control Yukawa couplings and higher dimensional
operators. Higher dimensional operators are useful as ef-
fective Yukawa couplings when proper scalar fields de-

velop their expectation values (VEVs). Continuous and
discrete non-Abelian symmetries, e.g. U�2�, D4, S3��
D3�, A4, Qn, ��3n2�, ��6n2� are assumed as flavor sym-
metries [3–11], while Abelian symmetries such as U�1�,
ZN are often assumed, too. However, from the viewpoint of
4D field theory their origins are not clear.

Such flavor structure also has significant implications for
supersymmetry (SUSY) breaking terms [12]. Super-
partners have not been detected yet, but flavor changing
neutral current (FCNC) processes are strongly constrained
by experiments [13,14]1; requiring that soft SUSY break-
ing terms should be approximately degenerate between the
first and second families. Thus, in several field-theoretical
models the first and second families are assumed to be a
doublet under certain flavor symmetries, while the third
family may be a singlet. Furthermore, there are FCNC
constraints for the third family, although not as restrictive
as for the first and second families.

Superstring theory is a promising candidate for a unified
theory including gravity. Hence, it is very important to
study what type of flavor structures can be realized within
the framework of string models and to investigate their
implications for particle physics. Heterotic orbifold models
can lead to realistic 4D models, and one interesting feature
is that phenomenological aspects are determined by geo-
metrical properties of the orbifolds. For examples, in
Refs. [16–19] Z3 models with three families have been
obtained. In Z3 orbifold models, the untwisted matter
sector has the degeneracy factor three, which originates
from a triplet of SU�3�H holonomy; a subgroup of broken
SU�4�R symmetry. Also each 2D Z3 orbifold of a 6D

1See also [15] and references therein.
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orbifold has three fixed points, with a degenerate massless
spectra, unless one introduces Wilson lines. These triplets
in the untwisted and twisted sectors correspond to three
families in the models of Refs. [16–19]. In this case, the
Higgs fields must also be a triplet such that at least the top
Yukawa coupling is allowed as a 3-point coupling.

Recently, a new type of model has been constructed on
the Z2 � Z3 � Z6 orbifold [20,21].2 In these models, three
families are realized as a singlet and doublet under a D4

flavor symmetry. That is these models are, as far as we
know, the first models to realize such flavor structure. The
third family of quarks and leptons are D4 singlets. Thus,
one important aspect of such flavor structure is that the
Higgs field, which is allowed to couple to the top quark, is a
singlet under the flavor symmetry. Moreover, the flavor
structure has other significant implications in the Yukawa
matrices and SUSY breaking terms. Hence, it is important
to study phenomenological aspects of the string-derived
D4 flavor symmetry as well as other discrete non-Abelian
flavor symmetries.

Furthermore, in Ref. [23], all possible non-Abelian dis-
crete flavor symmetries, which can appear from heterotic
orbifold models, have been classified. Those include D4,
��54� and SW4, and ��54� can break into D3. In addition,
it has been shown that the model on S1=Z2 can include only
D4-doublets and trivial singlets as fundamental modes, but
models on T2=Z4 and T4=Z8 can include nontrivial D4

singlets, too.
Here we study the D4 flavor structure. Generic heterotic

orbifold models leading to the D4 flavor structure are
considered. We also analyze their phenomenological as-
pects, that is, effective Yukawa couplings and SUSY break-
ing terms. Furthermore we study FCNC constraints on
SUSY breaking terms in detail.

This paper is organized as follows. In Sec. II, we show
how the D4 flavor structure appears from heterotic orbifold
models. In Sec. III, we study its implication on Yukawa
matrices. In Sec. IV, we study predictions of SUSY break-
ing squark masses and scalar trilinear couplings. Section V
is devoted to conclusion and discussion. In Appendix A,
group-theoretical aspects of D4 are summarized. In
Appendix B, we summarize sfermion masses and scalar
trilinear couplings, derived from a U�1� Froggatt-Nielsen
model to compare with our model. In Appendix C, we
comment on a possibility to realize SUSY breaking terms
consistent with t� b� � Yukawa unification.

II. D4 FLAVOR STRUCTURE IN STRING MODELS

A. D4 flavor symmetry from orbifold models

In this section, we show that the D4 flavor structure can
be derived in Z2 � ZM heterotic orbifold models. (See also
[23].) The Z2 � ZM orbifold is obtained as follows. First,

we consider the 6D T2 � T2 � T2 torus. Then, we divide it
by two independent twists, � and!, whose eigenvalues are
e2�iv1 and e2�iv2 with

 v1 � �1=2;�1=2; 0�; v2 � �0; 1=M;�1=M�; (2.1)

respectively, in the complex basis, such that we obtain the
Z2 � ZM orbifold preserving N � 1 4D SUSY. Note that
the first plane becomes the 2D Z2 orbifold by dividing the
T2 by the Z2 twist. The 2D Z2 orbifold has four fixed points
denoted as �n1

2 e1 	
n2

2 e2� for n1, n2 � 0, 1, where e1 and e2

are lattice vectors defining T2. The twisted states are
associated with these fixed points. Namely, the �2k	1!‘

twisted states have the degenerate spectrum for these four
fixed points, while for the �2k!‘ twist this space is just the
fixed torus and the degeneracy factor from this space is just
one.

We can introduce degree-two Wilson lines 2Wi � �G
associated with ei (i � 1, 2), where �G is the gauge lattice,
i.e. the E8 � E8 lattice for the E8 � E8 heterotic string
theory. For example, the nonvanishing Wilson line W1

resolves the degeneracy between the fixed points n2

2 e2

and 1
2 e1 	

n2

2 e2 (n2 � 0, 1), that is, the massless spectrum
of the twisted states corresponding to the fixed points n2

2 e2

differs from one corresponding to the fixed points 1
2 e1 	

n2

2 e2 (n2 � 0, 1). However, there still remains the degen-
eracy factor two unless we introduce a nontrivial Wilson
line W2 along the e2 direction. Thus, the degeneracy be-
tween the states jn2 � 0i and jn2 � 1i in the �2k	1!‘

twisted sector is the origin of doublets under our flavor
symmetry, studied in this paper. We will show later that the
flavor symmetry is actually the D4 symmetry. On the other
hand, the �2k!‘ twisted sector as well as the untwisted
sector does not have such a fixed point structure. Hence,
the states in such sectors correspond to a singlet under our
flavor symmetry.

Here we show that the above flavor structure corre-
sponds to the D4 flavor symmetry. The Lagrangian has
the permutation symmetry between the states jn2i with
n2 � 0, 1. In addition, each coupling is controlled by the
Z2 symmetry, under which the state jn2i is transformed as
jn2i ! ��1�n2 jn2i. These transformations are denoted by
the two Pauli matrices,

 �1 �
0 1
1 0

� �
; �3 �

1 0
0 �1

� �
; (2.2)

respectively, on the state basis �jn2 � 0i; jn2 � 1i�. The
complete closed set of operations forms the discrete non-
Abelian D4 symmetry, which consists of

 
 I; 
�1; 
i�2; 
�3: (2.3)

The D4 symmetry is a symmetry of a square. Thus, the
�2k	1! twisted states are D4 doublets, while the other
�2k! twisted states and the untwisted states are D4

singlets.2See also for recent studies on model construction [22].
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Note, a field-theoretical orbifold grand unified theory
(GUT) explanation may be useful for field theory model
builders. We consider the model with the extra dimension
S1=Z2, which has two fixed points. String theory requires
that brane fields on these two fixed points must be degen-
erate in the massless spectrum unless a nonvanishing
Wilson line is introduced to resolve this degeneracy.
Brane fields on two fixed points of S1=Z2 are D4 doublets
corresponding to �2k	1! twisted states in Z2 � ZM heter-
otic orbifold models. On the other hand, bulk fields on
S1=Z2 are D4 singlets corresponding to �2k! twisted states
and untwisted states. Finally string selection rules require
that the superpotential contains an even number of doublet
fields at each fixed point.

B. Explicit model

Here we give the example with the D4 flavor structure,
which has been obtained in Ref. [21]. That is the Z2 �
Z3 � Z6 orbifold model with the Pati-Salam gauge group
SU�4� � SU�2�L � SU�2�R and the extra gauge group
SO�10�0 � SU�2�0 �U�1�5. The model has three families
under the Pati-Salam group, i.e. 3� ��4; 2; 1� 	 ��4; 1; 2��.
The untwisted sector has one family, �4; 2; 1� 	 ��4; 1; 2�
under SU�4� � SU�2�L � SU�2�R, which include the third
family of left-handed quarks and antiquarks, q3, �u3, and �d3.
The �! twisted sector has the other two families, which
include the first and second families of quarks, qi, �ui and �di
(i � 1, 2). The Higgs field �1; 2; 2� comes from the un-
twisted sector, and it includes the up-sector and down-
sector Higgs fields, hu and hd. Thus, the third family of
quarks as well as Higgs fields are D4 singlets, while the
other two families are D4 doublets. In Table I, we show
their extra U�1� charges for later convenience. This model
also includes extra matter fields usually found in string
models. (See for details Ref. [21].)

The discussion in the rest of the paper is quite generic
and independent of the particular gauge group, since we are
now more interested in the consequences of the flavor
symmetries. Therefore, we will discuss the case that three
families of quarks and leptons in the basis of the standard
model gauge group consist of singlets and doublets under
the D4 flavor symmetry. In the following sections, we
concentrate on the phenomenological implications of the
D4 flavor structure in the quark sector.

III. YUKAWA MATRICES

In this section and the next section, we study phenome-
nological implications of the D4 flavor structure. First, in
this section we consider Yukawa matrices. We consider the
D4 flavor structure where the third family q3, �u3, �d3

corresponds to the D4 trivial singlet A1 and the first and
second families qi, �ui, �di (i � 1, 2) are D4 doublets. The
up- and down-sectors of Higgs fields are also D4 singlets.
(See Appendix A for more details on the discrete groupD4

and its representations.)
Let us examine the 3-point couplings,

 y�u�ij qi �ujHu; y�d�ij qi �djHd: (3.1)

The D4 algebra allows diagonal entries, i.e. y�u;d�ij �

y�u;d�i �ij with y�u;d�1 � y�u;d�2 � y�u;d�3 . If y�u;d�i � O�1�, that
is not realistic. Thus, we assume that extra symmetries
allow the couplings of the third family, but not the first
or second families, i.e.

 y�u;d� �
0 0 0
0 0 0
0 0 y�u;d�33

0
@

1
A: (3.2)

Actually, the example shown in Sec. II B has extra U�1�
symmetries which forbid the Yukawa couplings for the first
and second families, but allow the third family Yukawa
couplings. In the explicit string model, other stringy selec-
tion rules also forbid the Yukawa couplings for the first and
second families [21]. Furthermore, in the model [21], the
third family Yukawa couplings are required to be the same
as the gauge coupling g, i.e. y�u;d�33 � g � O�1�.

Now, let us consider how to generate the other entries of
the Yukawa matrix. Those are expected to be generated as
effective Yukawa couplings through higher dimensional
operators once certain scalar fields develop their VEVs.
String models, in general, have several gauge-singlet fields
�, and they can develop VEVs along flat directions. Of
course, each gauge-singlet field transforms as a trivial
singlet A1 or a doublet under the D4 group. In addition, a
product of D4 doublets include four types of D4-singlets,
A1, B1, B2, and A2. Thus, higher dimensional operators can
generate the following effective Yukawa matrices,

 y�u;d� �

��u;d�
�A1�
	��u;d�

�B2�
��u;d�
�B1�
	��u;d�

�A2�
��u;d�
�D1�

��u;d�
�B1�
���u;d�

�A2�
��u;d�
�A1�
���u;d�

�B2�
��u;d�
�D2�

��u;d�
�D01�

��u;d�
�D02�

1

0
BBB@

1
CCCA; (3.3)

up to O�1� coefficients (assuming the singlet fields have
proper U�1� charges). Here, ��u;d�

�R� denotes a product of

gauge singlets in the R representation under D4, and ��u;d�
�D1�

and ��u;d�
�D2�

are D4 doublet.3 Here, their VEVs are denoted

TABLE I. Extra U�1� charges in explicit string model.

Q1 Q2 Q3 Q4 QA

q3 1 1 0 3 �2
q1;2 �1 0 0 0 0
�u3, �d3 �3 0 0 �1 0
�u1;2, �d1;2 �1 0 0 0 0
hu, hd 2 �1 0 �2 2

3In the explicit model [21] we can generate such effective
Yukawa matrices by SM gauge singlets, contained in the model.
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by dimensionless parameters with unitsM � 1, whereM is
the Planck scale. These effective Yukawa matrices have
more than enough free parameters (as VEVs of singlets �),
such that one can realize realistic values of quark masses
and mixing angles in a generic model. In other words, we
have no prediction in the Yukawa sector using only the D4

flavor symmetry, unless additional symmetries or condi-
tions for � are imposed. Note, for later reference, the
experimental values of the quark mass ratios and mixing
angles can be given by the approximate relations

 

md

ms
� �2;

ms

mb
�

1

2
�2; (3.4)

 

mu

mc
� �4;

mc

mt
� �3 � �4; (3.5)

 Vus � �; Vcb � �2; Vub � �3 � �4; (3.6)

where � � 0:22.

Model

Here we show a simple example leading to realistic
results. We introduce ��q�

�D1;2�
, ��d�
�D1;2�

, �̂�d�
�D1;2�

, and ��A1� (un-

related to the variables ��u;d� introduced in Eq. (3.3)), and
assume they develop VEVs.��A1� is aD4 trivial singlet and

the others are D4 doublets. We also introduce two extra
U�1� symmetries. Note, the U�1� charges of each field are
assigned in Table II. The following discussion is indepen-
dent of values of the U�1� symmetry parameters a, b, x,
and y (see Table II). A working example is

 a � 1; b � 0; x � 0; y � 1: (3.7)

Then we obtain the following forms of Yukawa matrices,

 y�u� �
c�u�a �

�d�
�D1�

�̂�d�
�D1�
	 c�u�b �

�d�
�D2�

�̂�d�
�D2�

c�u�b ��
�d�
�D1�

�̂�d�
�D2�
	 ��d�

�D2�
�̂�d�
�D1�
� c�u�3 ��q�

�D1�

c�u�b ��
�d�
�D1�

�̂�d�
�D2�
	 ��d�

�D2�
�̂�d�
�D1�
� c�u�b �

�d�
�D1�

�̂�d�
�D1�
	 c�u�a �

�d�
�D2�

�̂�d�
�D2�

c�u�3 ��q�
�D2�

0 0 1

0
BB@

1
CCA;

y�d� �
c�d�a �

�d�
�D1�

�̂�d�
�D1�
	 c�d�b �

�d�
�D2�

�̂�d�
�D2�

c�d�b ��
�d�
�D1�

�̂�d�
�D2�
	 ��d�

�D2�
�̂�d�
�D1�
� c�d�3 ��q�

�D1�
��A1�

c�d�b ��
�d�
�D1�

�̂�d�
�D2�
	 ��d�

�D2�
�̂�d�
�D1�
� c�d�b �

�d�
�D1�

�̂�d�
�D1�
	 c�d�a �

�d�
�D2�

�̂�d�
�D2�

c�d�3 ��q�
�D2�

��A1�

0 0 ��A1�

0
BB@

1
CCA:

(3.8)

Here the (3, 1) and (3, 2) entries in both Yukawa matrices
of up and down sectors are quite suppressed, and irrelevant
to the following discussions.

We choose the VEVs of the � fields as

 ��q�
�D1�
� �3; ��q�

�D2�
� �2;

��d�
�D1�
� ��d�

�D2�
� �̂�d�

�D1�
� �̂�d�

�D2�
� �2; ��A1� � �:

(3.9)

Then, we have naturally the following texture,

 y�u� �
�4 �4 �3

�4 �4 �2

0 0 1

0
B@

1
CA; y�d� �

�4 �4 �4

�4 �4 �3

0 0 �

0
B@

1
CA:

(3.10)

This texture can fit the quark mass ratios, the CKM mixing
angles, and the KM phase. Note, however, the mass ratios,
mu=mc andmd=ms, and the mixing angle Vus, are expected

naturally to satisfymu=mc � md=ms � Vus � O�1� unless
we fine-tune coefficients. The upper left 2� 2 submatrices
are in democratic forms. To realize the mass hierarchy
between the first and the second family quarks, we need
the following fine-tuning of the upper left 2� 2 subma-
trices for the up and down sectors, y�u�

�22� and y�d�
�22�,

 y�u�
�22� � O��4�

1	 "�u�11 1	 "�u�12

1	 "�u�12 1	 "�u�22

 !
;

y�d�
�22� � O��4�

1	 "�d�11 1	 "�d�12

1	 "�d�12 1	 "�d�22

 !
;

(3.11)

with

 "�u�11 � 2"�u�12 	 "
�u�
22 � O��4�;

"�d�11 � 2"�d�12 	 "
�d�
22 � O��2�:

(3.12)

TABLE II. U�1� charges of the fields.

Q1 Q2

q3 1 3
q1;2 �1 0
�u3 �3 �1
�u1;2 �1 0
�d3 �3� a �1� b
�d1;2 �1 0
hu 2 �2
hd 2 �2

��q�
�D1;2�

2 3

��d�
�D1;2�

2	 x 3	 y

�̂�d�
�D1;2�

�2� x �1� y
��A1� a b
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At any rate, we have a sufficient number of parameters to
realize the above fine-tuning.

IV. SUSY BREAKING TERMS

Here we study SUSY breaking terms in the model with
the D4 flavor structure. In particular, we are interested in
the forms of sfermion mass-squared matrices and A-terms,
and study their degeneracies.

A. Sfermion masses

Let us first study squark masses. It is obvious that before
theD4 flavor symmetry breaks theD4 flavor structure leads
to the soft scalar mass-squared matrices,

 m2
	i	j
�

m2
	1	1

0 0

0 m2
	1	1

0

0 0 m2
	3	3

0
B@

1
CA; (4.1)

for	i � qi; �ui; �di (i � 1, 2, 3). However, we are interested
in corrections to the above form from D4 flavor symmetry
breaking, and we estimate such corrections in what
follows.

We consider the SUSY breaking scenario, where moduli
fields M including the dilaton are dominant in SUSY
breaking [24–26]. Such a scenario would be plausible
within the framework of string-inspired supergravity.

Before flavor symmetry breaking, the D4 flavor symme-
try requires that the Kähler potential of matter fields has the
diagonal form

 Kmatter �
X

	i�qi;ui;di

K	i	
y
i
�M�j	ij2; (4.2)

with

 K	1	
y
1
�M� � K	2	

y
2
�M�; (4.3)

where 	i � qi; ui; di. In general, the Kähler metric K	i	
y
i

depends on moduli fields M.
In general, we obtain the following soft SUSY breaking

scalar masses [27],

 m2
	i	i
� V0 	m

2
3=2 �

X
a;b

F�a �F�b@�a
@ ��b

ln�K	i	
y
i
�;

(4.4)

where V0 is the vacuum energy and m3=2 is the gravitino
mass defined by the total Kähler potential K and super-
potential W asm2

3=2 
 he
KjWj2i. Thus, the D4 flavor struc-

ture leads to the soft scalar mass-squared matrices (4.1) for
	i � qi; �ui; �di (i � 1, 2, 3). Naturally, nonvanishing en-
tries, m2

	i	i
are of O�m2

3=2�.
The D4 breaking induces off-diagonal entries of the

Kähler metric and squark mass-squared matrices. The (1,
2) entry of the Kähler metric for 	i � qi; �ui; �di can be
induced by e.g.

 C	1	
y
2
�M���d�

�D1��
�d�y
�D2�	1	

y
2 ; (4.5)

and other similar operators, where the coefficient
C	1	

y
2
�M� may depend on moduli M. Similarly, the (2, 1)

entry can be induced. Furthermore, the (i, 3) and (3, i)
entries (i � 1, 2) for left-handed squarks can be induced by

 C	i	
y
3
�M���q�

�Di�qiq
y
3 ; C	3	

y
i
�M���q�y

�Di�q3q
y
i : (4.6)

These corrections are dominant. Although other terms are
allowed, those are not important in the following
discussion.

This Kähler metric generates the following form of left-
handed squark masses squared in the flavor basis,

 m2
q �

m2
q1q1

O��4m2� O��3m2�

O��4m2� m2
q1q1

O��2m2�

O��3m2� O��2m2� m2
q3q3

0
B@

1
CA; (4.7)

where m would be of the same order as mq1q1
and mq3q3

.
Similarly, down-sector right-handed squark masses are
obtained as

 m2
d �

m2
d1d1

O��4m2� 0

O��4m2� m2
d1d1

0

0 0 m2
d3d3

0
B@

1
CA; (4.8)

where �i; 3� and �3; i� entries are suppressed sufficiently.
The up-sector right-handed squark masses have the same
form.

Note that F-components F� of� fields as well as moduli
F-terms contribute to squark masses. Both contributions
lead to the above form of squark masses squared, because
we have

 Fy��R� � �e
hKi=2hK��R���R��

y
�R�Ŵ 	 @��R�Ŵi; (4.9)

whereK��R���R� denotes the Kähler metric of��R�, and Ŵ is
the nontrivial superpotential leading to SUSY breaking,
and naturally we estimate F�=� � O�m3=2�.
F-components of �-fields are more important for estimat-
ing A-terms, and we will discuss them in more detail in the
next subsection.

Here we define mass insertion parameters ��u;dij �XY , i.e.,

 ��u;dij �XY 

�mu;d

ij �
2
XY

~m2 ; (4.10)

where XY � LL;RR;LR and ~m2 denotes the average
squark mass-squared.
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Our model leads to

 ��d12�LL � �
4; ��d13�LL � �

2; ��d23�LL � �
2;

��d12�RR � �
4; ��d13�RR & �4; ��d23�RR & �4;

��u12�LL � �
4; ��u13�LL � �

2; ��u23�LL � �
2;

��u12�RR � �
4; ��u13�RR & �4; ��u23�RR & �4;

(4.11)

at the Planck scale. In addition, we have flavor-blind
renormalization group (RG) effects due to gaugino masses
of O�7M2

1=2�. Such RG effects reduce the above mass
insertion parameters by O�10�1�, because gaugino masses
M1=2 are naturally of O�m3=2� within the framework of
dilaton/moduli mediation. These values of mass insertion
parameters satisfy experimental constraints on FCNCs
[13,14]. When we derived Eq. (4.11), we assumed that
m2

11=m
2
33 �O�1�. If the ratio is larger than O�1=��, then

the mass insertion parameters get enhanced by 1=�. Still
they are phenomenologically acceptable.

Furthermore, we have assumed extra U�1� symmetries
to obtain realistic Yukawa matrices. Breaking of such extra
symmetries, in general, induces D-term contributions to
soft scalar masses which are proportional to the U�1�
charges of fields, as shown in Eq. (B2) of Appendix B.
(See Ref. [28] for heterotic models.) However, as a con-
sequence of the D4 flavor structure, such D-term contribu-
tions are also degenerate between the first and second
families, because they must have the same U�1� charges.
Thus, after including such D-term contributions, SUSY
breaking scalar mass-squared matrices are still of the
form of Eq. (4.1).4

B. A-terms

Now, let us study the SUSY breaking trilinear scalar
couplings, i.e. the A-terms. Soft trilinear terms are obtained
as [27]

 hijk �
X
m

Fm
�
@mYijk 	 @mK̂ �

X
n;p

�K	n	
y
p@mK	i	

y
p
Ynjk

	 K	n	
y
p@mK	j	

y
p
Yink 	 K	n	

y
p@mK	k	

y
p
Yijn�

�
;

(4.12)

in generic case with nonvanishing off-diagonal elements of
the Kähler metric. When the Kähler metric of matter fields
(within the framework of supergravity) is diagonal, the
SUSY breaking trilinear scalar couplings are written as

 hijk � YijkAijk; (4.13)

 Aijk � A�K�ijk 	 A
�Y�
ijk ; (4.14)

where

 A�K�ijk �
X
m

Fm�@mK̂ � @m ln�K	i	
y
i
K	j	

y
j
K	k	

y
k
��; (4.15)

 A�Y�ijk �
X
m

Fm@m ln�Yijk�: (4.16)

The first term of A�K�ijk is the universal contribution due to

the Kähler potential K̂ of the dilaton and moduli fields. The
second term of A�K�ijk is the contribution through the wave

function, i.e. the Kähler metric. The term A�Y�ijk appears only
when Yukawa couplings are field dependent. Prior to D4

symmetry breaking, the only nonvanishing entry in the
Yukawa matrix is for Yijk with i � j � 3 and k � H
(Higgs).

We consider the A-matrices after the D4 symmetry
breaking. As studied in Sec. IVA, the D4 symmetry break-
ing induces off-diagonal elements of Kähler metric, e.g. for
left-handed squarks,

 

O�1� O��4� O��3�

O��4� O�1� O��2�

O��3� O��2� O�1�

0
B@

1
CA: (4.17)

Right-handed squarks of up and down sectors have a
similar form of Kähler metric, but �i; 3� and �3; i� elements
for i � 1, 2 are more suppressed. The Kähler metric is
almost diagonal, and such a diagonal form is violated by
O��4� in the (1, 2) entry. Thus, it is reasonable to neglect
off-diagonal elements of the Kähler metric in the first
approximation. Then, as we discuss shortly, our model of
Yukawa matrices discussed in the previous section leads to
the following form of scalar trilinear coupling matrices,

 h�u� �
O��4� O��4� O��3�

O��4� O��4� O��2�

0 0 O�1�

0
B@

1
CA� A;

h�d� �
O��3� O��3� O��3�

O��3� O��3� O��2�

0 0 O�1�

0
B@

1
CA� �� A:

(4.18)

This seems to lead to mass insertion parameters, e.g.

 ��d12�LR � �
3 �mbA= ~m2: (4.19)

However, due to quark-squark mass alignment, we will
show that our model actually leads to much smaller values
of mass insertion parameters.

In the following we derive the scalar trilinear couplings
in Eq. (4.18). For the moment, let us neglect off-diagonal
elements of the Kähler metric as discussed above. Since the
D4 flavor structure requires that K	1	

y
1
� K	2	

y
2
, the form

of A�K� including the Higgs field is obtained as

4Moreover, RG effects due to extra U�1� gaugino masses are
also significant [29]. Such RG effects are also degenerate be-
tween the first and second families in our model, because they
have the same U�1� charges.

KO, KOBAYASHI, PARK, AND RABY PHYSICAL REVIEW D 76, 035005 (2007)

035005-6



 A�K�ijH �

A�K�0 A�K�0 A�K�1

A�K�0 A�K�0 A�K�1

A0�K�1 A0�K�1 A�K�3

0
BB@

1
CCA; (4.20)

for both the up and down sectors.
Now, let us discuss the A�Y� part. The Yukawa couplings

depend on gauge singlets � (3.3). Thus, their
F-components F� contribute to A�Y�, and it is important
to evaluate F�. Within the framework of supergravity, the
F-component of � is written as

 Fy��R� � �e
hKi=2hK��R���R��

y
�R�Ŵ 	 @��R�Ŵi; (4.21)

whereK��R���R� denotes the Kähler metric of��R�, and Ŵ is
the nontrivial superpotential leading to SUSY breaking.
The D4 symmetry requires

 K��D1���D1�
� K��D2���D2�

; (4.22)

as well as K��D1���D2�
� K��D2���D1�

� 0. Here we assume
that the nontrivial superpotential does not include�. In this
case, we can write

 

F��R�

h��R�i
� �ehKi=2hŴ�i: (4.23)

Therefore, the total A-matrices of the up and down sectors
have the form

 A�u;d�ijH �

A�u;d�0 A�u;d�0 A�u;d�1

A�u;d�0 A�u;d�0 A�u;d�1

A0�u;d�1 A0�u;d�1 A�u;d�3

0
BB@

1
CCA: (4.24)

The (2� 2) submatrices for the first and second families
are degenerate. That implies that when we write Yukawa
matrices of our model as

 y�u� �
c�u�11 �

4 c�u�12 �
4 c�u�13 �

3

c�u�21 �
4 c�u�22 �

4 c�u�23 �
2

0 0 1

0
B@

1
CA;

y�d� �
c�d�11 �

3 c�d�12 �
3 c�d�13 �

3

c�d�21 �
3 c�d�22 �

3 c�d�23 �
2

0 0 1

0
B@

1
CA� �;

(4.25)

in the D4 basis, the scalar trilinear coupling matrices have
the following form,

 h�u� �
c�u�11 �

4 c�u�12 �
4 b�u�c�u�13 �

3

c�u�21 �
4 c�u�22 �

4 b�u�c�u�23 �
2

0 0 c�u�

0
B@

1
CA� A;

h�d� �
c�d�11 �

3 c�d�12 �
3 b�d�c�d�13 �

3

c�d�21 �
3 c�d�22 �

3 b�d�c�d�23 �
2

0 0 c�d�

0
B@

1
CA� �� A:

(4.26)

as given in Eq. (4.18). Note, this form is quite different

from one which is obtained in the U�1� Froggatt-Nielsen
model as shown in Appendix B.

Now consider the consequence of quark-squark mass
alignment. The upper left 2� 2 submatrices of y�u� (y�d�)
and h�u� (h�d�) are proportional to each other. We can
multiply each of y�u� and y�d� by two unitary matrices on
the left and the right-hand sides to diagonalize the upper
left 2� 2 submatrix. After doing this, we obtain

 y�u� �
c0�u�11 �

7 0 c0�u�13 �
2

0 c0�u�22 �
4 c0�u�23 �

2

0 0 1

0
B@

1
CA;

y�d� �
c0�d�11 �

4 0 c0�d�13 �
2

0 c0�d�22 �
3 c0�d�23 �

2

0 0 1

0
B@

1
CA� �:

(4.27)

In the same basis, the h matrices look like

 h�u� �
c0�u�11 �

7 0 b�u�c0�u�13 �
2

0 c0�u�22 �
4 b�u�c0�u�23 �

2

0 0 c�u�

0
B@

1
CA� A;

h�d� �
c0�d�11 �

4 0 b�d�c0�d�13 �
2

0 c0�d�22 �
3 b�d�c0�d�23 �

2

0 0 c�d�

0
B@

1
CA� �� A:

(4.28)

Then, we can estimate the LR and RL mass insertion
parameters applying the perturbative diagonalization for-
mula to the above matrices,

 ��d12�LR � �
7 �mbA= ~m2; ��d13�LR � �

2 �mbA= ~m2;

��d23�LR � �
2 �mbA= ~m2; ��d12�RL � �

8 �mbA= ~m2;

��d13�RL � �
6 �mbA= ~m2; ��d23�RL � �

5 �mbA= ~m2;

��u12�LR � �
8 �mtA= ~m2; ��u13�LR � �

2 �mtA= ~m2;

��u23�LR � �
2 �mtA= ~m2; ��u12�RL � �

11 �mtA= ~m2;

��u13�RL � �
9 �mtA= ~m2; ��u23�RL � �

6 �mtA= ~m2:

(4.29)

As noted previously, these are much smaller than their
naive values, Eq. (4.19). They satisfy experimental con-
straints [13,14]. When we derived Eq. (4.29), we assumed
that all the A’s in Eq. (4.24) have almost the same sizes, and
all of their ratios are of O�1�. If their ratios are larger than
O�1=��, then the above estimate should be multiplied by
O�1=��, which is still phenomenologically viable.

Up until now we have neglected off-diagonal elements
of the Kähler metric. Here we discuss corrections due to
these neglected terms. Such corrections violate the degen-
eracy of the upper left (2� 2) submatrices in A�u;d�ijH (4.24)
by O��4�. Similarly, they can make corrections to other
entries. Note that Eqs. (4.13), (4.14), (4.15), and (4.16) are
not available for nonvanishing off-diagonal elements of the
Kähler metric and we have to use the generic formula
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(4.12). Including these corrections modifies the scalar trilinear couplings to

 h�u� �
�c�u�11 	O��

4���4 �c�u�12 	O��
4���4 �b�u�c�u�13 	O��

3���3

�c�u�21 	O��
4���4 �c�u�22 	O��

4���4 �b�u�c�u�23 	O��
4���2

O��6� O��6� c�u�

0
B@

1
CA� A;

h�d� �
�c�d�11 	O��

4���3 �c�d�12 	O��
4���3 �b�d�c�d�13 	O��

3���3

�c�d�21 	O��
4���3 �c�d�22 	O��

4���3 �b�d�c�d�23 	O��
4���2

O��6� O��6� c�d�

0
B@

1
CA� �� A:

(4.30)

Corrections such as these do not drastically change the
above estimation of mass insertion parameters.

V. CONCLUSIONS

In this paper we have discussed the structure of heterotic
string models with the discrete non-Abelian flavor symme-
try D4. Such flavor symmetries are easily obtained in a
variety of orbifold constructions of the heterotic string
[20–23]. For example, D4 flavor symmetries are easily
obtained in Z2 � ZN orbifold constructions. We have also
shown that these discrete non-Abelian flavor symmetries
may be useful for understanding the hierarchy of fermion
masses and mixing angles. In addition, they constrain the
SUSY breaking mass-squared matrices and cubic scalar
interaction matrices; hence suppressing flavor violating
processes. In particular, the non-Abelian flavor symme-
tries, with quarks of the first two families in one irreducible
representation, reduce the sensitivity to flavor violating
interactions. In Appendix B, we have also compared the
structure of soft SUSY breaking mass-squared matrices
and A-term matrices consistent with discrete non-Abelian
flavor symmetries and those of U�1� flavor symmetries. As
discussed, U�1� flavor symmetries do not sufficiently con-
strain FCNC processes.

We have considered only the quark sector. We can
extend the previous analysis to the lepton sector. Indeed,
we can obtain the same results for Yukawa matrices, SUSY
breaking scalar masses, and A-terms as Eqs. (3.3), (4.1),
and (4.24). With a D4 flavor symmetry, there is no diffi-
culty encountered for obtaining the standard seesaw
mechanism with heavy right-handed neutrinos. However
there are still many more additional parameters due to the
right-handed Majorana masses. The number of free pa-
rameters is typically larger than the number of observables.
Thus, we have no prediction in the Yukawa sector, unless
we impose texture zeros or assume additional symmetries.
On the other hand, we have predictions for SUSY breaking
terms. Actually, the branching ratio for �! e
 leads to
the strongest constraint. Hence, the degeneracy between
the first and second families would help to satisfy this
constraint, in particular, by suppressing the factor, ��‘12�LL.

In order to obtain more predictive Yukawa sectors we
need to reduce the number of free parameters. This can be
done by embedding the flavor structure into GUTs. In some
orbifold GUT and string models with an intermediate Pati-

Salam gauge symmetry, the third generation Yukawa cou-
plings are unified with �t � �b � �� � ��� . However in
order for these theories to be phenomenologically accept-
able, certain relations among the soft SUSY breaking terms
must hold, in particular A33 � �2m33 [30]. It is clear that
this relation is not satisfied with simple scenarios of dilaton
or moduli SUSY breaking. A possible explanation may
require a more complicated SUSY breaking scenario, for
example, see Appendix C.
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APPENDIX A: D4 DISCRETE GROUP

The D4 discrete group has five representations including
a doublet D, a trivial singlet A1, and three nontrivial
singlets B1, B2, A2, which are shown in Table III.

A product of two doublets is decomposed as four sin-
glets,

 �D�D� � A1 	 B1 	 B2 	 A2: (A1)

More explicitly, we consider two D4 doublets SA and �SA
(A � 1, 2). Their product SA �SB is decomposed in terms of

TABLE III. Representations of D4 symmetry.

Representations I �I 
�1 
�3 �i�2

Doublet-D 2 �2 0 0 0
Singlet-A1 1 1 1 1 1
Singlet-B1 1 1 1 �1 �1
Singlet-B2 1 1 �1 1 �1
Singlet-A2 1 1 �1 �1 1
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A1, B1, B2, A2,

 S1
�S1 	 S2

�S2 � A1; (A2)

 S1
�S2 	 S2

�S1 � B1; (A3)

 S1
�S1 � S2

�S2 � B2; (A4)

 S1
�S2 � S2

�S1 � A2: (A5)

APPENDIX B: SUSY BREAKING TERMS IN THE
U�1� FROGGATT-NIELSEN MODEL

One of the famous flavor mechanisms is the U�1�
Froggatt-Nielsen mechanism in the string-inspired ap-
proach. Here we give brief comments on soft SUSY break-
ing terms to compare them with our results from the D4

flavor structure.
In the simple U�1� FN mechanism, the effective Yukawa

couplings are obtained through the higher dimensional
operators, e.g.

 �qQi	quj	qHuQiujHu; (B1)

where � is the FN field with nonvanishing VEV and qQi,
quj, and qHu are extra U�1� charges of Qi, uj, and Hu,
respectively. In this mechanism, it is easy to derive realistic
Yukawa matrices.

We have the usual sfermion masses due to
F-components of moduli fields like Eqs. (4.4). Since the
U�1� flavor symmetry, in general, does not specify the
Kähler metric of matter fields, one can not give a generic
statement on this part. In addition to this usual part, the
extra U�1� breaking induces additional contributions to
sfermion masses, that is, the so-called D-term contribu-
tions. Such part is, in general, written as

 �m2
� � q�m

2
D; (B2)

where q� is the extra U�1� charge of matter field, and m2
D

itself is universal for all matter fields, that is, these are
proportional to extra U�1� charges. (See Ref. [28] for
heterotic models.) Furthermore, RG effects due to extra
U�1� gaugino masses may generate significant nondege-
neracy when each family has different U�1� charges [29].

As Sec. IV B, A-terms are obtained by calculating
Eqs. (4.15) and (4.16). In this case, we obtain the
A�Y�-matrices [31,32],

 AijH �
F�

�
�qQi 	 quj 	 qH�; (B3)

for YijH � �qQi	quj	qH . Here note that F�
� � O�m3=2� be-

cause F� � � �W. Also note that the flavor dependence in
the second term of A�K� can be separated. As a result,
A-terms are decomposed as [33]

 A�
H � AL� 	 A
R

: (B4)

Moreover, the trilinear scalar coupling matrix hijH is writ-
ten as
 

hijH � YijAijH

� �Yij� �

AR1
AR2

AR3

0
BB@

1
CCA

	

AL1
AL2

AL3

0
BB@

1
CCA � �Yij�: (B5)

This form of the A-matrices, in general, leads to dangerous
FCNC effects.

APPENDIX C: SO�10�YUKAWA UNIFICATION AND
SUSY BREAKING TERMS

SO�10� Yukawa unification for the third family, result-
ing from the renormalizable coupling

 W � � 163 10 163; (C1)

gives

 �t � �b � �� � ��� � �: (C2)

In order to fit the top, bottom, and tau masses at the weak
scale, it has been shown that it is necessary to be in a
particular region of soft SUSY breaking parameter space
[30]. Define the soft SUSY breaking parameters: A0, the
cubic scalar interaction mass term; M1=2, a universal gau-
gino mass; m16, the soft scalar mass for squarks and
sleptons; and m10, the Higgs soft SUSY breaking mass.
Then we require the relation

 A0 � �2m16; (C3)

 m10 �
���
2
p
m16; (C4)

and
 ��M1=2 � m16: (C5)

The question is can this relation come naturally in string
theory. It is difficult to obtain this result from a combina-
tion of dilaton and T moduli SUSY breaking. Here we
argue that this simple relation can come from D-term and
minimal supersymmetric standard model (MSSM) singlet
SUSY breaking. Consider the U�1�X symmetry in E6

which commutes with SO�10�. The 27 dimensional repre-
sentation of E6 decomposes under SO�10� �U�1�X as

 27 ! �16; 1� � �10;�2� � �1; 4�: (C6)

If we now assume the 16 of quarks and leptons comes from
a 27, while the Higgs doublets come from a 27, we obtain
the wanted relation

 m2
10 � 2m2

16 
 2DX: (C7)

We also obtain the same scalar mass for all three families
of squarks and sleptons, consistent with minimal flavor
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violation. Furthermore, the relation

 ��M1=2 � m16 (C8)

is easy to accommodate, for example, by subdominant
dilaton SUSY breaking. Thus the only remaining question
is the origin of the cubic scalar parameter A0.

Assume we have a term in the superpotential of the form

 W � �QX�Qi�	QX�uj�	QX�Hu�Qi uj Hu � �4 Qi uj Hu; (C9)

where � (withQX��� � �1) is a MSSM singlet field. Then
in order to obtain the relation (Eq. (C3)) from Eq. (B3) we
need

 A0 � 4F�=� � �2
�������
DX

p
: (C10)

This relation may also be accommodated.
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