552 research outputs found

    Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies

    Get PDF
    BACKGROUND: Brentuximab vedotin is a CD30-directed antibody-drug conjugate. Retreatment with brentuximab vedotin monotherapy was investigated in patients with CD30-positive Hodgkin lymphoma (HL) or systemic anaplastic large cell lymphoma (ALCL) who relapsed after achieving complete or partial remission (CR or PR) with initial brentuximab vedotin therapy in a previous study (ClinicalTrials.gov NCT00947856). METHODS: Twenty-one patients with HL and 8 patients with systemic ALCL were retreated; 3 patients with systemic ALCL were retreated twice. Patients generally received brentuximab vedotin 1.8 mg/kg intravenously approximately every 3 weeks over 30 minutes as an outpatient infusion. The primary objectives of this study were to assess safety and to estimate antitumor activity of brentuximab vedotin retreatment. RESULTS: The objective response rate was 60% (30% CR) in HL patients and 88% (63% CR) in systemic ALCL patients. The estimated median duration of response for patients with an objective response was 9.5 months (range, 0.0+ to 28.0+ months) at the time of study closure. Of the 19 patients with objective response, 7 patients had not had an event of disease progression or death at the time of study closure; duration of response for these patients ranged from 3.5 to 28 months. Of the 11 patients with CR, 45% had response durations of over 1 year. Adverse events (AEs) occurring in ≥25% of patients during the retreatment period were generally similar in type and frequency to those observed in the pivotal trials of brentuximab vedotin monotherapy, with the exception of peripheral neuropathy, which is known to have a cumulative effect. Grade 3 or higher events were observed in 48% of patients; these were generally transient and managed by dose modifications or delays. Deaths due to AEs occurred in 3 HL patients; none were considered to be related to brentuximab vedotin retreatment. DISCUSSION: With the exception of a higher rate of peripheral motor neuropathy, retreatment with brentuximab vedotin was associated with similar side effects seen in the pivotal trials. CONCLUSIONS: Retreatment with brentuximab vedotin monotherapy is associated with response rates in 68% (39% CR) of patients with relapsed HL and systemic ALCL. TRIAL REGISTRATION: United States registry and results database ClinicalTrials.gov NCT00947856

    Measurement of the \nu_\mu charged current \pi^+ to quasi-elastic cross section ratio on mineral oil in a 0.8 GeV neutrino beam

    Get PDF
    Using high statistics samples of charged current νμ\nu_\mu interactions, MiniBooNE reports a measurement of the single charged pion production to quasi-elastic cross section ratio on mineral oil (CH2_2), both with and without corrections for hadron re-interactions in the target nucleus. The result is provided as a function of neutrino energy in the range 0.4 GeV <Eν<< E_\nu < 2.4 GeV with 11% precision in the region of highest statistics. The results are consistent with previous measurements and the prediction from historical neutrino calculations.Comment: 4 pages, 2 figure

    Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon

    Full text link
    The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasi-elastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of muon neutrino CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M_A^eff = 1.23+/-0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon; and a Pauli-suppression parameter, kappa = 1.019+/-0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.Comment: 5 pages, 3 figure

    Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector

    Get PDF
    Two independent methods are employed to measure the neutrino flux of the anti-neutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high purity \numu induced charged-current single \pip (CC1\pip) sample while the second exploits the difference between the angular distributions of muons created in \numu and \numub charged-current quasi-elastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the pre-dominately anti-neutrino beam is over-estimated - the CC1\pip analysis indicates the predicted \numu flux should be scaled by 0.76±0.110.76 \pm 0.11, while the CCQE angular fit yields 0.65±0.230.65 \pm 0.23. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of anti-neutrino beams observed by future non-magnetized detectors.Comment: 15 pages, 7 figures, published in Physical Review D, latest version reflects changes from referee comment

    Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

    Full text link
    The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, \nu_\mu ^{12}C \to \mu^- ^{12}C \pi^+, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67\times 10^{-2} at mean neutrino energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.Comment: 18 pages, 16 figures, Minor revisions to match version accepted for publication in Physical Review

    Carbon dynamics of the Weddell Gyre, Southern Ocean

    Get PDF
    The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically important region. The combination of carbonmeasurements with ocean circulation transport estimates from a box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell Sea Deep Water dominate the gyre’s carbon budget, while a dual-cell vertical overturning circulation leads to both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2 observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to 0.058 ± 0.010 Pg C / yr derived from the inversion. However, a wintertime outgassing signal similar in size results in a statistically insignificant annual air-to-sea CO2 flux of 0.002± 0.007 Pg C / yr (mean 1998–2011) to 0.012 ± 0.024 Pg C/ yr (mean 2008–2010) to be diagnosed for the Weddell Gyre. A surface layer carbon balance, independently derived fromin situ biogeochemical measurements, reveals that freshwater inputs and biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW entrainment, resulting in an estimated annual carbon sink of 0.033 ± 0.021 Pg C / yr. Although relatively less efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting natural and anthropogenic carbon to the deep ocean where they can reside for long time scales

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμ→νe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.
    • …
    corecore