201 research outputs found

    Shockwave/Boundary-Layer Interaction Studies Performed in the NASA Langley 20-Inch Mach 6 Air Tunnel

    Get PDF
    This paper highlights results from a collaborative study performed by The University of Tennessee Space Institute (UTSI) and NASA Langley Research Center on the Shockwave/Boundary-Layer Interaction (SWBLI) generated by a cylindrical protuberance on a flat plate in a Mach 6 flow. The study was performed in the 20-Inch Mach 6 Air Tunnel at NASA Langley Research Center and consisted of two separate entries. In the first entry, simultaneous high-speed schlieren and high-speed pressure-sensitive paint (PSP) imaging which was performed for the first time in the 20-Inch Mach 6 facility at NASA Langley were performed as well as simultaneous high-speed schlieren and oil-flow imaging. In the second entry, the model configuration was modified to increase the size of the interaction region. High-speed schlieren and infrared thermography (IR) surface imaging were performed in this second entry. The goal of these tests was to characterize the SBLI in the presence of a laminar, transitional, and turbulent boundary layer using high-speed optical imaging techniques. AoA = sting angle-of-attack () dcylinder = cylinder diameter (mm) dtrip = cylindrical tripping element diameter (mm) shock = shock stand-off distance (mm) hcylinder = cylinder height (mm) htrip = cylindrical tripping element height (mm) HSS = high-speed schlieren M = freestream Mach number PSP = pressure-sensitive paint Re = freestream unit Reynolds number (m-1) SWBLI = shockwave/boundary-layer interaction plate = model plate angle () Introduction his paper highlights two experimental entries performed in the 20-Inch Mach 6 Air Blowdown Tunnel at NASA Langley Research Center in collaboration with The University of Tennessee Space Institute (UTSI). The purpose of these entries was to characterize the dynamic shockwave/boundary-layer interaction (SWBLI) between a vertical cylinder on a flat plate and laminar, transitional (XSWBLI), and turbulent (SWTBLI) boundary layers with a freestream Mach number of 6 using non-intrusive optical diagnostics. Experiments performed by Murphree et al.1,2 were among the first to specifically characterize XSWBLI induced by a vertical cylinder on a flat plate geometry using several optical measurement techniques. Recent optical studies of XSWBLI phenomenon have been performed by UTSI at Mach 2 in their low-enthalpy blow wind tunnel3-8 and by Texas A&M University and UTSI at Mach numbers of 6 and 7 in their Adjustable Contour Expansion wind tunnel.9 The experiments described in this paper were intended to complement previous studies by expanding the freestream unit Reynolds number range, Re, over which the XSWBLI phenomena has been observed. Additionally these experiments, made possible under NASAs new facility funding model under the Aeronautics Evaluation and Test Capabilities (AETC) project, promoted collaboration between university and NASA researchers. The initial entry in the 20-Inch Mach 6 Air Tunnel at NASA Langley occurred in December of 2016. Originally, testing was to occur in November of 2016 in the 31-Inch Mach 10 Air Tunnel at NASA Langley. This facility was chosen so that the XSWBLI phenomenon could be observed at much higher Mach numbers than had previously been attempted in ground test experiments. The model selected for this experiment, a 10 half-angle wedge with a sharp leading edge (described in detail in section II.B), had previously been used by Danehy et al. [10] for boundary layer transition studies using the nitric oxide planar laser-induced fluorescence (NO PLIF) flow visualization technique. In that work, it was determined that transition could be induced downstream of a single htrip = 1-mm tall, dtrip = 4-mm diameter cylindrical tripping element and that the streamwise location of the transition could be changed for a single Re by changing the model angle-of-attack (AoA) (see Fig. A3 in Ref. [10] for more details). Based on the findings of that work, a decision was made to use the wedge model with the cylindrical tripping element to trip the boundary layer flow ahead of a cylindrical protuberance in order to achieve a XSWBLI. Unfortunately, the 31-Inch Mach 10 facility had been taken offline for repairs in October of 2016 and a decision was made to move the test to the 20-Inch Mach 6 facility. Since the behavior of the boundary layer with the chosen model configuration had not been studied before in that facility and the available test time was limited, the entry was considered to be exploratory and was used to collect spatially-resolved and time-resolved flow and surface visualization data that would be used to inform a second entry. Test techniques included simultaneous high-speed schlieren (HSS) captured at 160 kHz and high-speed pressure sensitive paint captured at 10 kHz as well as oil flow visualization, captured at 750 Hz. The second entry in the 20-Inch Mach 6 facility occurred in June and July of 2017. In this follow-on test, modifications to the wind tunnel model were made based on observations made during the first entry and included removing the cylindrical tripping element, increasing the size of the cylinder used to induce the SWBLI to increase the size of the interaction while simultaneously improving spatial resolution, and using a swept ramp array, similar to that described in Ref. [11], to trip the flow to turbulence. Simultaneous HSS (captured at 140 kHz, 100 kHz, and 40 kHz) and conventional IR thermography (captured at 30 Hz) imaging were performed simultaneously in this follow-on entry. This paper is intended to serve as a summary of the work performed during these two entries, to detail lessons learned from each entry, and to highlight some of the datasets acquired. Details on the experimental setup, model configuration, and techniques used are provided. Papers providing a more rigorous analysis of data acquired during the second entry, including statistical, spectral, and modal decomposition methods, can be found in Refs. [12,13]. An entry examining XSWBLI in the 31-Inch Mach 10 Blowdown Wind Tunnel facility is currently planned for mid-to-late calendar year 2019, pending the success of facility repairs. The work performed and described in this paper and the upcoming entry in the 31-Inch Mach 10 facility at NASA Langley have been made possible by NASAs new facility funding model under the Aeronautics Evaluation and Test Capabilities (AETC) project. Wind Tunnel Facility All experiments discussed in this paper were performed in the 20-Inch Mach 6 Air Tunnel at NASA Langley Research Center. Specific details pertaining to this facility can be found in Refs. [14,15], with only a brief description of the facility provided here. For both entries, the nominal freestream unit Reynolds number was varied between 1.8106 m-1 (0.5106 ft-1) and 26.3106 m-1 (8106 ft-1). The nominal stagnation pressure was varied between 0.21 MPa and 3.33 MPa and the nominal stagnation temperature was varied between 480 K and 520 K to achieve the desired Re condition. For all runs, the nominal freestream Mach number was 6. The nearly square test section is 520.7-mm (20.5-inches) wide by 508-mm (20-inches) high. Two 431.8-mm (17-inch) diameter windows made of Corning 7940, Grade 5F schlieren-quality glass serve as the side walls of the tunnel and provide optical access for the high-speed schlieren measurements. A rectangular window made of the same material as the side windows served as the top wall of the test section and provided optical access for the high-speed PSP and oil flow measurements. For the second entry, this top window was replaced with a Zinc Selenide (ZnSe) window with an anti-reflection coating capable of passing IR wavelengths between 8m and 12m with greater than 98% transmittance. The model was sting supported by a strut attached to a hydraulic system that allows for the model pitch angle to be adjusted between -5 to +55. For the first entry, an initial pitch/pause sweep of the model AoA was performed to observe the resulting SWBLI. Ultimately, however, the sting pitch angle for this entry was fixed at +10.0 so that the angle of the top surface of the wedge relative to the streamwise axis of the tunnel (referred to herein as the plate angle, plate), was plate = 0. For the second entry, plate = 0 and plate = -13.25 were initially tested with the swept ramp array (discussed in the following section) to determine which orientation produced conditions most favorable for XSWBLI to occur based on the heating signatures observed over the top surface of the model in the IR thermography images. Based on these initial tests, plate = -13.25 was set for the remainder of the runs in the second entry. For both entries, any model changes were performed in a housing located beneath the closed test section. Prior to performing a run of the tunnel, the housing was sealed and the tunnel started. Once the appropriate freestream conditions were achieved, the model was injected into the test section using a hydraulic injection system. B. Model Geometry For all runs, a 10 half-angle (20 full-angle) wedge model with a sharp leading edge was used. The model is described in detail in Refs. [10,16]. The top surface of the sharp leading edge of the model extended 47.8 mm from its upstream-most edge to a junction with the upstream edge of a stainless steel top plate that then extended an (a) (c) (b) Fig. 1 (a) Schematic of top surface of wedge model with gas seeding insert, (b) perspective view of the model in the 20-Inch Mach 6 tunnel with centerline pressure orifices on sharp leading edge, and (c) a perspective view of the model with stainless steel (top) and SLA middle insert (bottom) during the first entry. Flow occurs from left to right

    Hypersonic Laminar Boundary Layer Velocimetry with Discrete Roughness on a Flat Plate

    Get PDF
    Laminar boundary layer velocity measurements are made on a 10-degree half-angle wedge in a Mach 10 flow. Two types of discrete boundary layer trips were used to perturb the boundary layer gas. The first was a 2-mm tall, 4-mm diameter cylindrical trip. The second was a scaled version of the Orbiter Boundary Layer Transition (BLT) Detailed Test Objective (DTO) trip. Both 1-mm and 2.5-mm tall BLT DTO trips were tested. Additionally, side-view and plan-view axial boundary layer velocity measurements were made in the absence of these tripping devices. The free-stream unit Reynolds numbers tested for the cylindrical trips were 1.7x10(exp 6)/m and 3.3x10(exp 6)/m. The free-stream unit Reynolds number tested for the BLT DTO trips was 1.7x10(exp 6)/m. The angle of attack was kept at approximately 5-degrees for most of the tests resulting in a Mach number of approximately 8.3. These combinations of unit Reynolds numbers and angle of attack resulted in laminar flowfields. To study the precision of the measurement technique, the angle of attack was varied during one run. Nitric-oxide (NO) molecular tagging velocimetry (MTV) was used to obtain averaged axial velocity values and associated uncertainties. These uncertainties are as low as 20 m/s. An interline, progressive scan CCD camera was used to obtain separate images of the initial reference and shifted NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond sequential acquisition of both images. The maximum planar spatial resolution achieved for the side-view velocity measurements was 0.07-mm in the wall-normal direction by 1.45-mm in the streamwise direction with a spatial depth of 0.5-mm. For the plan-view measurements, the maximum planar spatial resolution in the spanwise and streamwise directions was 0.69-mm by 1.28-mm, respectively, with a spatial depth of 0.5-mm. Temperature sensitive paint (TSP) measurements are provided to compliment the velocity data and to provide further insight into the behavior of the boundary layers. The experiments were performed at the NASA Langley Research Center 31-Inch Mach 10 Air tunnel

    Supporting surveillance capacity for antimicrobial resistance: Laboratory capacity strengthening for drug resistant infections in low and middle income countries.

    Get PDF
    Development of antimicrobial resistance (AMR) threatens our ability to treat common and life threatening infections. Identifying the emergence of AMR requires strengthening of surveillance for AMR, particularly in low and middle-income countries (LMICs) where the burden of infection is highest and health systems are least able to respond. This work aimed, through a combination of desk-based investigation, discussion with colleagues worldwide, and visits to three contrasting countries (Ethiopia, Malawi and Vietnam), to map and compare existing models and surveillance systems for AMR, to examine what worked and what did not work. Current capacity for AMR surveillance varies in LMICs, but and systems in development are focussed on laboratory surveillance. This approach limits understanding of AMR and the extent to which laboratory results can inform local, national and international public health policy. An integrated model, combining clinical, laboratory and demographic surveillance in sentinel sites is more informative and costs for clinical and demographic surveillance are proportionally much lower. The speed and extent to which AMR surveillance can be strengthened depends on the functioning of the health system, and the resources available. Where there is existing laboratory capacity, it may be possible to develop 5-20 sentinel sites with a long term view of establishing comprehensive surveillance; but where health systems are weaker and laboratory infrastructure less developed, available expertise and resources may limit this to 1-2 sentinel sites. Prioritising core functions, such as automated blood cultures, reduces investment at each site. Expertise to support AMR surveillance in LMICs may come from a variety of international, or national, institutions. It is important that these organisations collaborate to support the health systems on which AMR surveillance is built, as well as improving technical capacity specifically relating to AMR surveillance. Strong collaborations, and leadership, drive successful AMR surveillance systems across countries and contexts

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    A longitudinal twin study of the association between childhood autistic traits and psychotic experiences in adolescence

    Get PDF
    - Background: This twin study investigated whether autistic traits during childhood were associated with adolescent psychotic experiences. - Methods: Data were collected from a community sample of approximately 5000 twin pairs, which included 32 individuals with diagnosed autism spectrum conditions (ASC). Parents rated autistic traits in the twins at four points between ages 8–16 years. Positive, negative, and cognitive psychotic experiences were assessed at age 16 years using self- and parent-report scales. Longitudinal twin analyses tested the associations between these measures. - Results: Autistic traits correlated weakly or nonsignificantly with positive psychotic experiences (paranoia, hallucinations, and grandiosity), and modestly with cognitive psychotic experiences (cognitive disorganisation). Higher correlations were observed for parent-rated negative symptoms and self-reported anhedonia, although the proportion of variance in both accounted for by autistic traits was low (10 and 31 %, respectively). The majority of the genetic influences on negative symptoms and anhedonia were independent of autistic traits. Additionally, individuals with ASC displayed significantly more negative symptoms, anhedonia, and cognitive disorganisation than controls. - Conclusions: Autistic traits do not appear to be strongly associated with psychotic experiences in adolescence; associations were also largely restricted to negative symptoms. Of note, the degree to which the genetic and environmental causes of autistic traits influenced psychotic experiences was limited. These findings thus support a phenotypic and etiological distinction between autistic traits and psychotic experiences

    Neurodevelopmental Correlates of True and False Recognition

    Get PDF
    The Deese/Roediger–McDermott (DRM) false-memory effect has been extensively documented in psychological research. People falsely recognize critical lures or nonstudied items that are semantically associated with studied items. Behavioral research has provided evidence for age-related increases in the DRM false-recognition effect. The present event-related functional magnetic resonance imaging study was aimed at investigating neurodevelopmental changes in brain regions associated with true- and false-memory recognition in 8-year olds, 12-year olds, and adults. Relative to 8-year olds, adults correctly endorsed more studied items as “old” but also mistakenly endorsed more critical lures. Age-related increases in recollection were associated with changes in the medial temporal lobe (MTL) activation profile. Additionally, age-related increases in false alarms (FAs) to semantically related lures were associated with changes in the activation profile of left ventrolateral prefrontal cortex, a region associated with semantic processing. Additional regions exhibiting age-related changes include posterior parietal and anterior prefrontal cortices. In summary, concomitant changes in the MTL, prefrontal cortex, and parietal cortex underlie developmental increases in true and false recognition during childhood and adolescence

    Disease and the Extended Phenotype: Parasites Control Host Performance and Survival through Induced Changes in Body Plan

    Get PDF
    BACKGROUND: By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite's phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions. METHODOLOGY/PRINCIPAL FINDINGS: By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ~50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period. CONCLUSIONS/SIGNIFICANCE: Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness.Brett A. Goodman and Pieter T. J. Johnso

    Structure of S. aureus HPPK and the Discovery of a New Substrate Site Inhibitor

    Get PDF
    The first structural and biophysical data on the folate biosynthesis pathway enzyme and drug target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), from the pathogen Staphylococcus aureus is presented. HPPK is the second essential enzyme in the pathway catalysing the pyrophosphoryl transfer from cofactor (ATP) to the substrate (6-hydroxymethyl-7,8-dihydropterin, HMDP). In-silico screening identified 8-mercaptoguanine which was shown to bind with an equilibrium dissociation constant, Kd, of ∼13 µM as measured by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). An IC50 of ∼41 µM was determined by means of a luminescent kinase assay. In contrast to the biological substrate, the inhibitor has no requirement for magnesium or the ATP cofactor for competitive binding to the substrate site. The 1.65 Å resolution crystal structure of the inhibited complex showed that it binds in the pterin site and shares many of the key intermolecular interactions of the substrate. Chemical shift and 15N heteronuclear NMR measurements reveal that the fast motion of the pterin-binding loop (L2) is partially dampened in the SaHPPK/HMDP/α,β-methylene adenosine 5′-triphosphate (AMPCPP) ternary complex, but the ATP loop (L3) remains mobile on the µs-ms timescale. In contrast, for the SaHPPK/8-mercaptoguanine/AMPCPP ternary complex, the loop L2 becomes rigid on the fast timescale and the L3 loop also becomes more ordered – an observation that correlates with the large entropic penalty associated with inhibitor binding as revealed by ITC. NMR data, including 15N-1H residual dipolar coupling measurements, indicate that the sulfur atom in the inhibitor is important for stabilizing and restricting important motions of the L2 and L3 catalytic loops in the inhibited ternary complex. This work describes a comprehensive analysis of a new HPPK inhibitor, and may provide a foundation for the development of novel antimicrobials targeting the folate biosynthetic pathway

    Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans

    Get PDF
    The study of Drosophila neurodegenerative mutants combined with genetic and biochemical analyses lead to the identification of multiple complex mutations in 60 patients with a novel form of ataxia/leukoencephalopathy

    The ethics of ‘Trials within Cohorts’ (TwiCs): 2nd international symposium - London, UK. 7-8 November 2016

    Get PDF
    On 7-8 th November 2016, 60 people with an interest in the ‘ Trials within Cohorts ’ (TwiCs) approach for randomised controlled trial design met in London. The purpose of this 2 nd TwiCs international symposium was to share perspectives and experiences on ethical aspects of the TwiCs design, discuss how TwiCs relate to the current ethical frame- work, provide a forum in which to discuss and debate ethical issues and identify future directions for conceptual and empirical research. The symposium was supported by the Wellcome Trust and the NIHR CLAHRC Yorkshire and Humber and organised by members of the TwiCs network led by Clare Relton and attended by people from the UK, the Netherlands, Norway, Canada and USA. The two-day sympo- sium enabled an international group to meet and share experiences of the TwiCs design (also known as the ‘ cohort multiple RCT design ’ ), and to discuss plans for future research. Over the two days, invited plenary talks were interspersed by discussions, posters and mini pre- sentations from bioethicists, triallists and health research regulators. Key findings of the symposium were: (1) It is possible to make a compelling case to ethics committees that TwiCs designs are ap- propriate and ethical; (2) The importance of wider considerations around the ethics of inefficient trial designs; and (3) some questions about the ethical requirements for content and timing of informed consent for a study using the TwiCs design need to be decided on a case-by-case basis
    corecore