441 research outputs found

    Diffuse polarized emission associated with the Perseus cluster

    Full text link
    We report on full-polarization radio observations of the Perseus cluster (Abell 426) using the Westerbork Synthesis Radio Telescope (WSRT) at wavelengths from 81-95 cm. We have employed a novel technique, Rotation Measure synthesis (Brentjens and de Bruyn, 2005) to unravel the polarization properties of the emission across the full field of view and detect polarized emission over a wide range of RM from about 0 to 90 rad m^-2. The low RM emission is associated with our Galaxy, while the high RM emission is associated with the Perseus cluster. The latter reaches typical surface brightness levels of 0.5-1 mJy per beam and must be rather highly polarized. Most of the peripheral polarized emission appears too bright, by about 1-2 orders of magnitude, to be explainable as Thomson scattered emission of the central radio source off the thermal electrons in the cluster. The bulk of the emission associated with the Perseus cluster is probably related to buoyant bubbles of relativistic plasma, probably relics from still active or now dormant AGN within the cluster. A lenticular shaped structure measuring 0.5-1 Mpc is strikingly similar to the structures predicted by Ensslin et al. (1998). At the western edge of the cluster, we detect very long, linear structures that may be related to shocks caused by infall of gas into the Perseus cluster.Comment: 18 pages, 17 figures, accepted by A&A, corrected small typo, added referenc

    Faraday caustics: Singularities in the Faraday spectrum and their utility as probes of magnetic field properties

    Full text link
    We describe singularities in the distribution of polarized intensity as a function of Faraday depth (i.e. the Faraday spectrum) caused by line-of-sight (LOS) magnetic field reversals. We call these features Faraday caustics because of their similarity to optical caustics. They appear as sharply peaked and asymmetric profiles in the Faraday spectrum, that have a tail that extends to one side. The direction in which the tail extends depends on the way in which the LOS magnetic field reversal occurs (either changing from oncoming to retreating or vice versa). We describe how Faraday caustics will form three-dimensional surfaces that relate to boundaries between regions where the LOS magnetic field has opposite polarity. We present examples from simulations of the predicted polarized synchrotron emission from the Milky Way. We derive either the probability or luminosity distribution of Faraday caustics produced in a Gaussian magnetic field distribution as a function of their strength, F, and find that for strong Faraday caustics P(F)\proptoF^{-3} . If fully resolved, this distribution is also shown to depend on the Taylor microscale, which relates to the largest scale over which dissipation is important in a turbulent flow.Comment: 14 pages, 9 figures, Accepted for publication in Astronomy & Astrophysic

    Wide field polarimetry around the Perseus cluster at 350 MHz

    Full text link
    This paper investigates the fascinating diffuse polarization structures at 350 MHz that have previously been tentatively attributed to the Perseus cluster and, more specifically, tries to find out whether the structures are located at (or near) the Perseus cluster, or in the Milky Way. A wide field, eight point Westerbork Synthesis Radio Telescope mosaic of the area around the Perseus cluster was observed in full polarization. The frequency range was 324 to 378 MHz and the resolution of the polarization maps was 2'x3'. The maps were processed using Faraday rotation measure synthesis to counter bandwidth depolarization. The RM-cube covers Faraday depths of -384 to +381 rad m^{-2} in steps of 3 rad m^{-2}. There is emission all over the field at Faraday depths between -50 and +100 rad m^{-2}. All previously observed structures were detected. However, no compelling evidence was found supporting association of those structures with either the Perseus cluster or large scale structure formation gas flows in the Perseus-Pisces super cluster. On the contrary, one of the structures is clearly associated with a Galactic depolarization canal at 1.41 GHz. Another large structure in polarized intensity, as well as Faraday depth at a Faraday depth of +30 rad m^{-2}, coincides with a dark object in WHAM H-alpha maps at a kinematic distance of 0.5 \pm 0.5 kpc. All diffuse polarized emission at 350 MHz towards the Perseus cluster is most likely located within 1 kpc from the Sun. The layers that emit the polarized radiation are less than 40 pc/B|| thick.Comment: 16 pages, accepted for publication in A&

    Wide-field LOFAR-LBA power-spectra analyses: Impact of calibration, polarization leakage and ionosphere

    Get PDF
    Contamination due to foregrounds (Galactic and Extra-galactic), calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a pilot study of a field centered on 3C196 using LOFAR Low Band (56-70 MHz) observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork' structure in the 2D power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon (EoR/CD window). We show that this structure largely arises due to strong instrumental polarization leakage (30%\sim30\%) towards {Cas\,A} (21\sim21 kJy at 81 MHz, brightest source in northern sky), which is far away from primary field of view. We measure an extremely small ionospheric diffractive scale (rdiff430r_{\text{diff}} \approx 430 m at 60 MHz) towards {Cas\,A} resembling pure Kolmogorov turbulence compared to rdiff320r_{\text{diff}} \sim3 - 20 km towards zenith at 150 MHz for typical ionospheric conditions. This is one of the smallest diffractive scales ever measured at these frequencies. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations (e.g. with SKA-low and HERA) in the same frequency window.Comment: 20 pages, 11 figures, accepted for publication in MNRA

    Faraday Rotation Measure Synthesis

    Get PDF
    We extend the rotation measure work of Burn (1966) to the cases of limited sampling of lambda squared space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n-pi ambiguity problems with the lambda squared coverage. Rotation measure synthesis can be implemented very efficiently on modern computers. Because the analysis is easily applied to wide fields, one can conduct very fast RM surveys of weak spatially extended sources. Difficult situations, for example multiple sources along the line of sight, are easily detected and transparently handled. Under certain conditions, it is even possible to recover the emission as a function of Faraday depth within a single cloud of ionized gas. Rotation measure synthesis has already been successful in discovering widespread, weak, polarized emission associated with the Perseus cluster (De Bruyn and Brentjens, 2005). In simple, high signal to noise situations it is as good as traditional linear fits to polarization angle versus lambda squared plots. However, when the situation is more complex or very weak polarized emission at high rotation measures is expected, it is the only viable option.Comment: 17 pages, 14 figures, accepted by A&A, added references, corrected typo

    Foregrounds for observations of the cosmological 21 cm line: II. Westerbork observations of the fields around 3C196 and the North Celestial Pole

    Full text link
    In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotation measure synthesis technique. We have computed total intensity and polarization angular power spectra. Total intensity maps were carefully calibrated, reaching a high dynamic range, 150000:1 in the case of the 3C196 field. [abridged]Comment: 20 pages, 22 figures, accepted for publication in A&A. A version with full resolution figures is available at http://www.astro.rug.nl/~bernardi/NCP_3C196/bernardi.pd

    Galactic interstellar filaments as probed by LOFAR and Planck

    Get PDF
    Recent Low Frequency Array (LOFAR) observations at 115-175 MHz of a field at medium Galactic latitudes (centered at the bright quasar 3C196) have shown striking filamentary structures in polarization that extend over more than 4 degrees across the sky. In addition, the Planck satellite has released full sky maps of the dust emission in polarization at 353GHz. The LOFAR data resolve Faraday structures along the line of sight, whereas the Planck dust polarization maps probe the orientation of the sky projected magnetic field component. Hence, no apparent correlation between the two is expected. Here we report a surprising, yet clear, correlation between the filamentary structures, detected with LOFAR, and the magnetic field orientation, probed by the Planck satellite. This finding points to a common, yet unclear, physical origin of the two measurements in this specific area in the sky. A number of follow-up multi- frequency studies are proposed to shed light on this unexpected finding.Comment: 6 pages, 4 figures, accepted for publication in MNRAS Letter

    Faraday synthesis: The synergy of aperture and rotation measure synthesis

    Full text link
    We introduce a new technique for imaging the polarized radio sky using interferometric data. The new approach, which we call Faraday synthesis, combines aperture and rotation measure synthesis imaging and deconvolution into a single algorithm. This has several inherent advantages over the traditional two-step technique, including improved sky plane resolution, fidelity, and dynamic range. In addition, the direct visibility- to Faraday-space imaging approach is a more sound foundation on which to build more sophisticated deconvolution or inference algorithms. For testing purposes, we have implemented a basic Faraday synthesis imaging software package including a three-dimensional CLEAN deconvolution algorithm. We compare the results of this new technique to those of the traditional approach using mock data. We find many artifacts in the images made using the traditional approach that are not present in the Faraday synthesis results. In all, we achieve a higher spatial resolution, an improvement in dynamic range of about 20%, and a more accurate reconstruction of low signal to noise source fluxes when using the Faraday synthesis technique.Comment: 11 pages, 5 figures, submitted to A&

    Broadband Meter-Wavelength Observations of Ionospheric Scintillation

    Full text link
    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisj\"arvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250\,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments, and indicate that scattering is most likely to be associated more with the topside ionosphere than the F-region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.Comment: 11 pages, 17 figure

    The Scintillating Tail of Comet C/2020 F3 (Neowise)

    Full text link
    Context. The occultation of a radio source by the plasma tail of a comet can be used to probe structure and dynamics in the tail. Such occultations are rare, and the occurrence of scintillation, due to small-scale density variations in the tail, remains somewhat controversial. Aims. A detailed observation taken with the Low-Frequency Array (LOFAR) of a serendipitous occultation of the compact radio source 3C196 by the plasma tail of comet C/2020 F3 (Neowise) is presented. 3C196 tracked almost perpendicularly behind the tail, providing a unique profile cut only a short distance downstream from the cometary nucleus itself. Methods. Interplanetary scintillation (IPS) is observed as the rapid variation of the intensity received of a compact radio source due to density variations in the solar wind. IPS in the signal received from 3C196 was observed for five hours, covering the full transit behind the plasma tail of comet C/2020 F3 (Neowise) on 16 July 2020, and allowing an assessment of the solar wind in which the comet and its tail are embedded. Results. The results reveal a sudden and strong enhancement in scintillation which is unequivocally attributable to the plasma tail. The strongest scintillation is associated with the tail boundaries, weaker scintillation is seen within the tail, and previously-unreported periodic variations in scintillation are noted, possibly associated with individual filaments of plasma. Furthermore, contributions from the solar wind and comet tail are separated to measure a sharp decrease in the velocity of material within the tail, suggesting a steep velocity shear resulting in strong turbulence along the tail boundaryComment: Accepted for publication in Astronomy and Astrophysics, 8 pages, 9 figure
    corecore