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ABSTRACT

We extend the rotation measure work of Burn (1966, MNRAS, 133, 67) to the cases of limited sampling of λ2 space and non-constant emission
spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of nπ ambiguity problems with the λ2

coverage. Rotation measure synthesis can be implemented very efficiently on modern computers. Because the analysis is easily applied to wide
fields, one can conduct very fast RM surveys of weak spatially extended sources. Difficult situations, for example multiple sources along the
line of sight, are easily detected and transparently handled. Under certain conditions, it is even possible to recover the emission as a function of
Faraday depth within a single cloud of ionized gas. Rotation measure synthesis has already been successful in discovering widespread, weak,
polarized emission associated with the Perseus cluster (de Bruyn & Brentjens 2005, A&A, 441, 931). In simple, high signal to noise situations
it is as good as traditional linear fits to χ versus λ2 plots. However, when the situation is more complex or very weak polarized emission at high
rotation measures is expected, it is the only viable option.

Key words. methods: data analysis – techniques: polarimetric – magnetic fields – polarization – ISM: magnetic fields –
Cosmology: large-scale structure of Universe

1. Introduction

Polarization observations at radio frequencies are an impor-
tant diagnostic tool in the study of galactic and extragalac-
tic magnetic fields (e.g. Kronberg 1994; Vallee 1997; Widrow
2002). Due to birefringence of the magneto-ionic medium, the
polarization angle of linearly polarized radiation that propa-
gates through the plasma is rotated as a function of frequency.
This effect is called Faraday rotation. There exist many papers
describing aspects of Faraday rotation work. The most rele-
vant ones for this work are Burn (1966), Gardner & Whiteoak
(1966), Sokoloff et al. (1998), Sokoloff et al. (1999), and Vallee
(1980).

Assuming that the directions of the velocity vectors of the
electrons gyrating in a magnetized plasma are isotropically dis-
tributed, Le Roux (1961) showed that the intrinsic degree of
polarization of synchrotron radiation from plasma in a uniform
magnetic field is given by

‖p‖ = 3γ + 3
3γ + 7

, (1)

independent of frequency and viewing angle. In this equation,
γ is the spectral index of the relativistic electron distribution in
energy

ne(E) dE = AE−γ dE, (2)

� Appendices are only available in electronic form at
http://www.edpsciences.org

where ne(E)dE is the density of the electrons between en-
ergies E and E + dE. The density of electrons having ener-
gies between 1 and 1 + dE is AdE. The total electron density
ne =

∫ ∞
E0

ne(E)dE, where E0 is a cutoff energy that is required
in order to let the integral converge.

From observations of the Crab nebula by Woltjer (1958),
Westfold (1959) determined that γ ≈ 5

3 . This would imply
a polarization fraction of approximately 67%, independent of
frequency. In many radio sources, the observed polarization
fractions are much lower. Usually the polarization fraction de-
creases steeply with increasing wavelength (Conway & Strom
1985; Strom & Conway 1985).

Burn (1966) discusses this depolarization effect exten-
sively. One of the mechanisms he discusses is Faraday disper-
sion: emission at different Faraday depths along the same line
of sight.

Following Burn (1966), we make a clear distinction be-
tween Faraday depth (φ) and rotation measure (RM). We define
the Faraday depth of a source as

φ(r) = 0.81
∫ here

there
neB · dr rad m−2, (3)

where ne is the electron density in cm−3, B is the magnetic
induction in µGauss, and dr is an infinitesimal path length
in parsecs. A positive Faraday depth implies a magnetic field
pointing towards the observer. There may exist many differ-
ent sources of radiation at different Faraday depths along the

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20052990
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Fig. 1. P(λ2) for a simple, yet non-trivial Faraday dispersion function: a synchrotron emitting and Faraday rotating slab at −2 ≤ φ ≤ +2 rad m−2

(the Galactic foreground) and a Faraday thin source at φ = +10 rad m−2 (a distant radio lobe). The lefthand panel shows qualitatively how the
individual (Q, U) vectors of the foreground and the lobe relate to the total polarization ‖P‖ and the polarization angle χ. It reflects the situation
around λ2 ≈ 0.38 m2. Pl rotates counter clockwise around the moving pivot Pfg. The righthand panel shows the polarization angle as a function
of λ2, plotted along the lefthand vertical axis. The total polarization and Stokes Q of the foreground are plotted along the righthand vertical
axis.

same line of sight. These sources may be either Faraday thin
or Faraday thick. A source is Faraday thin if λ2∆φ � 1. ∆φ
denotes the extent of the source in φ. Faraday thin sources
are well approximated by Dirac δ-functions of φ. A source is
Faraday thick if λ2∆φ � 1. Faraday thick sources are extended
in φ. They are substantially depolarized at λ2. Remember that
whether a source is Faraday thick or Faraday thin is wavelength
dependent. See Fig. 1 and Appendix B for examples.

The rotation measure is commonly defined as the slope of
a polarization angle χ versus λ2 plot:

RM =
dχ(λ2)

dλ2
, (4)

where

χ =
1
2

tan−1 U
Q
· (5)

Burn (1966) also introduces the complex Faraday dispersion
function F(φ), which is defined through

P(λ2) =
∫ +∞

−∞
F(φ)e2iφλ2

dφ. (6)

F(φ) is the complex polarized surface brightness per unit
Faraday depth, and P(λ2) = p(λ2)I(λ2) is the complex polar-
ized surface brightness. Burn assumes that F(φ) is independent
of frequency. In Sect. 3 we investigate to what extent this as-
sumption can be relaxed.

P can be written as

P = ‖p‖Ie2iχ, (7)

or equivalently,

P = pI = Q + iU. (8)

Equation (6) is very similar to a Fourier transform. A funda-
mental difference is that P(λ2) only has physical meaning for

λ2 ≥ 0. Because P cannot be measured at λ2 < 0, Eq. (6) is
only invertible if one makes some assumptions on the value of
P at λ2 < 0 based on its value at λ2 ≥ 0 (Burn 1966). An exam-
ple is that P is Hermitian. This corresponds to assuming that
F(φ) is strictly real. Burn showed that his approach worked
by performing the inversion successfully on the Crab nebula.
However, in his derivation of the inverse, he did not consider
the effect of incomplete sampling of the domain λ2 > 0. In
Sect. 2 we treat a generalization of Eq. (6) that is both invert-
ible and takes arbitrary sampling of λ2 space into account. We
refer to Appendix B for an example illustrating the effect of
different sampling domains.

If there is only one source along the line of sight, which
in addition has no internal Faraday rotation, and does not suf-
fer from beam depolarization, then the Faraday depth of that
source is equal to its rotation measure at all wavelengths:

χ(λ2) = χ0 + φλ
2. (9)

In general, however, this is not the case (e.g. Vallee 1980).
A simple example illustrates this. Imagine a classical dou-

ble radio galaxy, of which the lobe closest to us is at a Faraday
depth of φl rad m−2. The lobe itself is Faraday thin and has
an intrinsic polarized flux density of 0.25 Jy beam−1 (positive
Stokes Q). At low frequencies, there is usually some polarized
Galactic foreground emission between us and the radio galaxy.
The Galactic foreground is modelled as a uniform slab with
a constant, uniform magnetic field. The total integrated polar-
ized surface brightness of the Galactic foreground at λ = 0 is
1 Jy beam−1 (positive Stokes Q). The Faraday dispersion func-
tion F(φ) is a top hat function:

F(φ) =

{
(2φfg)−1 −φfg ≤ φ ≤ +φfg

0 elsewhere.
(10)

In order to let the foreground emission start at φ � 0 we assume
a Faraday rotating, but non emitting medium between us and
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the Galactic foreground emission. For the sake of simplicity
we assume that the total intensity spectra of both sources are
flat. The complex polarized flux of this configuration is

P(λ2) = Pfg(λ2) + Pl(λ
2) (11)

= (2φfg)−1
∫ +φfg

−φfg

e2iφλ2
dφ +

1
4

e2iφlλ
2

(12)

=
sin 2φfgλ

2

2φfgλ2
+

1
4

cos(2φlλ
2) +

1
4

i sin(2φlλ
2), (13)

where the first term is the contribution of the Galactic fore-
ground and the last two terms are due to the radio lobe. The
first term in Eq. (13) is also called the Burn depolarization
function. The result for the uniform slab, and results for sev-
eral other simple models can be found in Gardner & Whiteoak
(1966) and Burn (1966). Pfg(λ2) is real because the F(φ) of the
Galactic foreground emission is symmetric around 0.

Figure 1 plots χ, ‖P‖, and Qfg for Eq. (13). Qfg is the
real part of Pfg. We have taken φl = +10 rad m−2 and φfg =

2 rad m−2. At low λ2, the foreground dominates over the lobe,
forcing Stokes Q of the sum of the polarizations to be positive,
while U can be both positive and negative. In this regime, χ os-
cillates around zero. However, when the foreground is signifi-
cantly depolarized, the lobe starts to dominate the total (Q, U)
vector. This point is reached somewhere near λ2 = 0.55 m2.
From there on the total (Q, U) vector runs through all four
quadrants. As the polarized flux of the foreground vanishes, the
total polarization angle approaches more and more a straight
line corresponding to a RM of +10 rad m−2.

Figure 2 shows an example of a fairly complex line of sight.
There are three areas with polarized emission (A, B, and C),
of which two (A and B) also have internal Faraday rotation.
The middle panel shows the non-monotonic relation between
Faraday depth and physical depth. Although area B is larger
in physical depth, area A is larger in Faraday depth due to the
high absolute value of neB‖.

A physical interpretation of this example would be that re-
gion A and its adjacent rotation-only areas reside in our Galaxy,
area B and its neighboring rotation-only areas are a galaxy
cluster, and area C represents a collection of distant polarized
sources without any internal Faraday rotation of their own. Line
of sight 1 goes through the cluster, while line of sight 2 just
misses it. This causes C to be at different Faraday depth in the
two lines of sight.

Because of the Fourier nature of both Eq. (6) and ra-
dio synthesis imaging, there exist many analogies between
the two. Examples are uv plane sampling versus λ2 sampling
and synthesized beam versus RMTF. Therefore we prefer to
call the process of inversion “Rotation Measure synthesis”
(“RM-synthesis” for short).

Similar methods have recently been applied to pulsar ob-
servations (Mitra et al. 2003; Weisberg et al. 2004). de Bruyn
(1996) applied the method for the first time to an entire field
of view. He also introduced the concept of a Rotation Measure
Transfer Function (RMTF, see also Sect. 2 of this work). When
applied to a complete field of view instead of just one line of
sight, the output of a RM-synthesis is a so-called “RM-cube”.
The RM-cube has axes α, δ, and φ. It is the Faraday rotation
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Fig. 2. Cartoon sketching the relation between emission, ne B‖,
Faraday depth φ, location x, and observed Faraday spectrum. The
top panel depicts the physical situation. The arrows represent ne B‖.
Longer arrows mean larger ‖ne B‖‖. The direction of the arrow indi-
cates the direction of the parallel component of the magnetic field.
The x coordinate represents physical distance from the observer. The
observer is located at the far left of the plots. The x axis is severely
compressed in two places. Empty areas have neither emission nor ro-
tation. White blocks represent areas with only Faraday rotation. Grey
areas with an arrow have both emission and rotation (area A and B)
and grey areas without an arrow have only emission (area C). There
are two lines of sight, labelled 1 and 2. Line of sight 1 goes through
areas A, B, and C. Line of sight 2 misses area B as well as the ad-
jacent non emitting Faraday rotating white boxes. The middle panel
plots Faraday depth φ as a function of physical distance x for both
lines of sight. The bottom panel shows ‖F(φ)‖, the observed polarized

surface brightness
(
rad m−2

)−1
, for both lines of sight. The peaks in

the spectra are labelled with the associated areas.

equivalent of a 21 cm line cube. The application to wide fields
allowed the discovery of widespread, very faint polarized emis-
sion associated with the Perseus cluster (de Bruyn & Brentjens
2005).

Modern correlator backends, like the ones installed at the
WSRT, the GMRT, and the ATCA and the one to be installed
at the EVLA deliver the visibilities in many (32 to 1024) nar-
row channels across a wide band (typically 16 to 160 MHz).
The narrow channels move the bandwidth depolarization limit
to much higher rotation measures. The wider bands yield very
high sensitivities if the full bandwidth can be used. Thanks to
these backends RM-synthesis has finally become a practical,
even necessary observing method.



1220 M. A. Brentjens and A. G. de Bruyn: RM-synthesis

Section 2 discusses the generally incomplete sampling of
λ2 > 0. We formally derive the RMTF. Section 3 treats mod-
ifications to the assumption that F(φ) is frequency indepen-
dent. In Sect. 4 we treat the relation between the RMTF and
nπ ambiguities in traditional RM fitting. Section 5 describes
RM-synthesis with Stokes Q or U only. Section 6 gives ad-
vice on designing Faraday rotation experiments, taking the
findings of this work into account. Section 7 concludes this
work. Appendix A expands on error estimation in RM work
and Appendix B treats an example simulation illustrating a few
important concepts presented in this work.

2. Derivation

The goal of this section is to approximate F(φ) by Fourier in-
verting a generalized version of Eq. (6). Table 1 summarizes
the symbols that are used throughout this paper. We general-
ize Eq. (6) by introducing the weight function W(λ2). W(λ2) is
also called the sampling function. It is nonzero at all λ2 points
where measurements are taken. It is zero elsewhere. Obviously,
W(λ2) = 0 for λ2 < 0 because of the lack of measurements
there. The observed polarized flux density, or surface bright-
ness in the case of spatially extended sources, is

P̃(λ2) = W(λ2)P(λ2). (14)

The tilde is used to indicate observed or reconstructed quanti-
ties. Substituting Eq. (6) gives

P̃(λ2) = W(λ2)
∫ +∞

−∞
F(φ)e2iφλ2

dφ. (15)

Equation (6) is very similar to the Fourier transform pair

f (x) =
∫ +∞

−∞
F(t)e−2πixt dt (16)

F(t) =
∫ +∞

−∞
f (x)e2πixt dx. (17)

Substituting λ2 = πu in Eq. (15) gives

P̃(πu) = W(πu)
∫ +∞

−∞
F(φ)e2πiφu dφ. (18)

We define the function

R(φ) =

∫ +∞
−∞ W(πu)e−2πiφu du

∫ +∞
−∞ W(πu) du

, (19)

which is normalized to unity at φ = 0. The inverse is

W(πu) =

(∫ +∞

−∞
W(πu) du

) ∫ +∞

−∞
R(φ)e2πiφu dφ. (20)

Equations (18) and (20) are now combined. Application of the
convolution theorem to the result gives

F(φ) ∗ R(φ) =

∫ +∞
−∞ P̃(πu)e−2πiφu du

∫ +∞
−∞ W(πu) du

, (21)

Table 1. List of symbols.

Symbol Description

χ Polarization angle (N through E)

χ0 Polarization angle at λ = 0

ν Frequency

δν Channel width in frequency

νc Central frequency of a channel

λ Wavelength

λ0 Wavelength to which all polarization vectors are
derotated

λ2
c Central wavelength squared of a channel

δλ2 Channel width in wavelength squared

∆λ2 Total bandwidth in wavelength squared. ∆λ2 =

λ2
max − λ2

min

φ Faraday depth

δφ FWHM of the main peak of the RMTF

RM Rotation measure

W(λ2) Weight function

wi Weight of the ith data point

K One over the integral of W or one over the sum of
weights

F(φ) Faraday dispersion function without spectral depen-
dence

F̃(φ) Reconstructed approximation to F(φ)

F(φ, λ2) General form of the Faraday dispersion function

f (φ) F(φ, λ2)/s(λ2)

s(λ2) Spectral dependence in I, normalized to unity at λ2 =

λ2
0

α Frequency spectral index

P(λ2) Complex polarized surface brightness

P̃(λ2) Observed P: W(λ2)P(λ2)

p(λ2) Complex polarization fraction P(λ2)/I(λ2)

R(φ) Rotation Measure Transfer Function (RMTF)

B Magnetic induction

r Position vector

ne Thermal electron density

γ Spectral index of the relativistic electron energy dis-
tribution


z Real part of z

�z Imaginary part of z

ρ Merit function for traditional linear least squares fit-
ting of rotation measures. Defined in Eq. (49)

σ rms noise in a single channel map

σQ, σU rms noise in single Q or U channel maps

σP, σχ Standard error of ‖P‖ and χ in individual channel
maps

σφ, σχ0 Standard error in Faraday depth and position angle
at λ = 0

σλ2 Standard deviation of the distribution of λ2 values
that are sampled. This is a measure of the effective
width of the λ2 sampling

δ(x) Dirac delta function
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Fig. 3. RMTF of a 92 cm dataset taken with the Westerbork Synthesis
Radio Telescope. There are 126 usable channels in the dataset. All
(Q,U) vectors have been derotated to λ2

0 = 0. Note the rapid rotation of
the RMTF, making it difficult to measure accurate polarization angles
in a sampled RM cube.

where ∗ denotes convolution. After back substituting u = λ2/π,
we obtain

F̃(φ) = F(φ) ∗ R(φ) = K
∫ +∞

−∞
P̃(λ2)e−2iφλ2

dλ2 (22)

R(φ) = K
∫ +∞

−∞
W(λ2)e−2iφλ2

dλ2 (23)

K =

(∫ +∞

−∞
W(λ2) dλ2

)−1

. (24)

F̃(φ) is an approximate reconstruction of F(φ). More precisely,
it is F(φ) convolved with R(φ) after Fourier filtering by the
weight function W(λ2). The quality of the reconstruction de-
pends mainly on the weight function W(λ2). A more complete
coverage of λ2 space improves the reconstruction. Fewer holes
in the λ2 sampling reduce the side lobes of R(φ), while cov-
ering a larger range of λ2 increases the resolution in φ space.
We return to these statements in the following sections. We call
R(φ) the rotation measure transfer function (RMTF).

The above set of equations is not yet our final result.
Figure 3 displays the rotation measure transfer function corre-
sponding to the λ2 sampling of our Perseus data set (de Bruyn
& Brentjens 2005). It only shows a small part of the RMTF
close to the peak. The response function displays a rapid rota-
tion of the (real, imaginary) vector. Because one usually sam-
ples φ space at finite intervals, this rotation makes it very dif-
ficult to correctly estimate the polarization angle at or near the
maximum of ‖F(φ)‖. If the Faraday depth of a frame is only a
tenth of the width of the RMTF away from the actual Faraday
depth of the source, the (real, imaginary) vector may already
be rotated by several tens of degrees.

Equations (22) and (23) correspond to derotating all po-
larization vectors back to their position at λ = 0. At first this
appears sensible, because the polarization vector at λ = 0 is
directly related to the electric field vector in the plane of the
sky without any Faraday rotation. Nevertheless no information
is lost by derotating to some other common λ2

0 � 0.

The more general versions of Eqs. (22) and (23) are

F̃(φ) = K
∫ +∞

−∞
P̃(λ2)e−2iφ(λ2−λ2

0) dλ2 (25)

R(φ) = K
∫ +∞

−∞
W(λ2)e−2iφ(λ2−λ2

0) dλ2. (26)

This is effectively an application of the shift theorem of Fourier
theory. Because the shift theorem only affects the argument,
and not the absolute value of the resulting complex function,
nothing changes in the amplitude of the RMTF. Equations (25)
and (15) form a Fourier pair that enables us to transform po-
larization information from λ2 space to φ space and back. The
function R(φ) is our final form of the rotation measure trans-
fer function (RMTF). It is a complex valued function. The real
part corresponds to the response of the transform parallel to the
(Q,U) vector at λ = λ0 and the imaginary part corresponds to
the response orthogonal to it. Assume that one has a Faraday
thin source at Faraday depth φ0, of which the polarization an-
gle is 45◦ (all polarized emission is in positive U) at λ2 = λ2

0.
Whenever R(φ − φ0) is real and positive, F̃(φ) would be imagi-
nary (all polarized flux in positive Stokes U). If, however R(φ)
is positive imaginary, F̃(φ) would be real and negative (all po-
larized flux in negative Stokes Q. This is important if φ � φ0,
that is, when the Faraday depth of the source does not match
the Faraday depth that was chosen for evaluation of F̃(φ).

The simplest way to see this is to consider the case when
F(φ) = P(λ2

0)δ(φ − φsource). This changes the convolution in
Eq. (25) into a multiplication. Hence the result of the righthand
side of Eq. (25) can be written as

F̃(φ) = P(λ2
0)R(φ − φsource). (27)

If R is imaginary, it can be written as ‖R‖e±iπ/2. Multiplication
of a complex number with e±iπ/2 corresponds to a rotation in the
complex plane of ±π/2, hence the apparent polarization angle
would have rotated by 45◦ relative to the actual polarization
angle at λ2 = λ2

0.
Ideally, the response in the entire main peak of the RMTF

should be parallel to the actual polarization vector at λ0. The
best way of achieving that is keeping the orthogonal response
as close to zero as possible. We set the derivative of the imagi-
nary part at φ = 0 to zero:

0 =
∂�R(φ)
∂φ

∣∣∣∣∣∣
φ=0

(28)

0 = −K
∂

∂φ

∫ +∞

−∞
W(λ2) sin 2φ(λ2 − λ2

0) dλ2

∣∣∣∣∣∣
φ=0

(29)

0 = −K
∫ +∞

−∞
W(λ2)2(λ2 − λ2

0) cos 2φ(λ − λ2
0) dλ2

∣∣∣∣∣∣
φ=0

(30)

0 =
∫ +∞

−∞
W(λ2)(λ2 − λ2

0) dλ2 (31)

λ2
0 =

∫ +∞
−∞ W(λ2)λ2 dλ2

∫ ∞
−∞W(λ2) dλ2

, (32)

hence λ2
0 should be made equal to the weighted average of the

observed λ2.
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Fig. 4. RMTF of the same dataset as described in Fig. 3. This time,
however, all P vectors have been derotated to the average λ2. It is seen
that the imaginary part remains almost constant within the central peak
of the RMTF.

A drawback of having λ2
0 � 0 is that the polarization angle

that one derives still needs to be transformed to a polarization
angle at λ2 = 0, if one wants information on the orientation of
the electric field direction in the source. In case of a high S/N
ratio, this is very easy:

χ0 = χ(λ2
0) − φλ2

0. (33)

However, if the signal to noise ratio is low, the uncertainty in φ
usually prevents accurate derotation to λ2 = 0. The advantage
of derotating to the weighted average λ2 is that one can still
properly analyze spatial coherence of polarization angles in a
spatially extended source at a certain Faraday depth.

Figure 4 shows the same RMTF as Fig. 3, except that λ2
0 is

set to the weighted average λ2. The improvement with respect
to the orthogonal response is evident. The response function
is almost completely real between the first minima. The only
drawback is that one cannot convert the observed polarization
angle at λ0 to a E vector in a straightforward way. In order to
accomplish reliable derotation to λ = 0, one needs a sufficiently
high S/N ratio to determine the Faraday depth with an accuracy
well within the full width at half maximum (FWHM) of the
RMTF. This is not a problem for bright sources that are already
detected in individual channels, but for faint emission that is
only detectable after RM-synthesis, one cannot usually do this.
These signal to noise statements are quantified in Sect. 4 and
Appendix A.

In most correlators, all channels have equal bandwidth δν,
centred around νc, the central frequency of the channel. Our
prime coordinate is λ2, not ν. If we assume a top hat channel
bandpass, we have for every channel:

λ2
c ≈

c2

ν2c


1 +

3
4

(
δν

νc

)2 (34)

and

δλ2 ≈ 2c2δν

ν3c


1 +

1
2

(
δν

νc

)2 . (35)

Of course the channel bandpass is usually not a top hat func-
tion, but rather a sinc if no taper was applied before the time-
to-frequency transform, or something in between if other tapers
like Hanning or Kaiser-Bessel are used. These differences are
hardly important as long as δν/νc � 1, which is usually the
case.

If φδλ2 � 1 for all channels, we may approximate the inte-
grals in Eqs. (25) and (26) by sums:

F̃(φ) ≈ K
N∑

i=1

P̃ie−2iφ(λ2
i −λ2

0) (36)

R(φ) ≈ K
N∑

i=1

wie−2iφ(λ2
i −λ2

0) (37)

K =




N∑

i=1

wi




−1

. (38)

In these equations, λ2
i is λ2

c of channel i, P̃i = P̃(λ2
i ) = wiP(λ2

i ),
wi = W(λ2

i ), and K has become the sum of all weights. We have
implemented Eqs. (36), (37), and (38) in our RM-synthesis
software.

3. Spectral dependence

In this section we investigate the effect of the emission spec-
trum of a source on the method. We start with the most general
case of an arbitrary spectrum at each Faraday depth. We sub-
stitute

F(φ) = F(φ, λ2) (39)

in Eq. (15)

P̃(λ2) = W(λ2)
∫ +∞

−∞
F(φ, λ2)e2iφλ2

dφ. (40)

In general, this equation is not invertible, except in cases
such as:

– F(φ, λ2) can be written as a product of independent func-
tions, i.e. F(φ, λ2) = f (φ)s(λ2);

– F(φ, λ2) = f (φ)δ(φ − φ0)s(λ2);
– the spectrum is a power law with α ∝ φ.

s(λ2) is the spectral dependence

s(λ2) =
I(λ2)

I(λ2
0)
· (41)

The third case, although invertible, is highly non-physical. The
inversion of the first case is trivial:

F(φ, λ2) = f (φ)s(λ2) (42)

P̃(λ2) = W(λ2)
∫ +∞

−∞
f (φ)s(λ2)e2iφλ2

dφ (43)

P̃(λ2)
s(λ2)

= p̃(λ2)I(λ2
0) = W(λ2)

∫ +∞

−∞
f (φ)e2iφλ2

dφ. (44)

This is equivalent to Eq. (15) divided by s(λ2), and we have
already shown that Eq. (15) is invertible.
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The second case is a specialization of the first case.
Equation (44) reduces to Eq. (15) in case of a flat spectrum.
The approximate Faraday dispersion function compensated for
a non-flat spectrum is given by:

f̃ (φ) = K
∫ +∞

−∞
W(λ2)

P(λ2)
s(λ2)

e−2iφ(λ2−λ2
0) dλ, (45)

or, if W(λ2) can be approximated by a sum of Dirac δ functions:

f̃ (φ) ≈ K
N∑

i=1

P̃i

si
e−2iφ(λ2

i −λ2
0), (46)

where si = s(λ2
i ) and f̃ (φ) = f (φ) ∗ R(φ).

Equation (42) applies only in some very specific scenarios.
It holds for example in optically thin synchrotron-emitting and
Faraday-rotating clouds that have the same relativistic electron
energy distribution throughout the cloud. It also holds if multi-
ple optically thin clouds along the line of sight happen to have
the same spectral dependence. Optically thin synchrotron ra-
diation has a spectrum that is proportional to να over a large
range of frequencies (Conway et al. 1963). For most sources, α
is in the range 〈−1.5,−0.5〉. In extreme cases the spectral index
of optically thin emission can approach 0 (e.g. the Crab nebula)
or -3 (for halo or relic sources in galaxy clusters).

In general, spectral indices vary across a map. One can of
course easily correct for the spectra of sources that are reli-
ably detected in individual channel maps. This is impossible
for sources that are much fainter and only show up after aver-
aging the full band. For those objects it makes sense to estimate
some “average” spectral index and apply that to the entire map.

What is the effect of using the wrong spectral index in cor-
recting for the spectrum of a single source along the line of
sight? The contributions of multiple sources along the line of
sight is simply the sum of their individual responses. Because
the spectrum is an amplitude only effect, it has no influence on
the location of the maximum of the Faraday dispersion function
of the source. Therefore its derived Faraday depth is unaffected.
It does distort the RMTF associated with the source at points
away from the main peak. This complicates deconvolution al-
gorithms slightly.

Figure 5 gives the Faraday dispersion functions of Faraday
thin model sources with spectral indices −3 to 0. It is seen that
the largest effect occurs close to the nulls of the RMTF. The
difference between α = −3 and α = 0 is small over the 17%
total frequency bandwidth in the simulation. It will not be no-
ticeable if the emission has such low S/N that it is invisible in
individual channels. For comparison, the normalized F̃(φ) of a
Faraday thick uniform slab model is included. The slab emits
at −1 ≤ φ ≤ +1 rad m−2. It is seen that the effect of even a
tiny amount of φ structure in the source is much larger than the
effect of changing the spectral index by ±1.

The general case of an arbitrary spectral dependence at
multiple Faraday depths is not invertible. One can only recover
the Faraday dispersion function if the spectral dependence is
the same at all Faraday depths along the line of sight. One
should then divide the observed polarization by the spectral de-
pendence in I. Figure 5 shows that if the spectral index is esti-
mated with an absolute uncertainty less than 1, the maximum
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Fig. 5. Absolute value of the approximated Faraday dispersion func-
tion of several Faraday thin sources with different spectral indices. The
λ2 grid is the same previously mentioned 126 channel dataset. The
overall bandwidth ∆ν/ν = 17%. Steeper spectra give deeper nulls. For
comparison the normalized approximated Faraday dispersion function
of a Faraday thick slab was included.

absolute error of the estimated flux density at a certain Faraday
depth is less than 2–5% of the brightest emission along the line
of sight. This accuracy is easily exceeded for sources that are
visible in total intensity. Sources that have not been detected
in total intensity should generally be assigned a spectral index
of −1. This worked very well in our observations of the Perseus
cluster, where we see large, faint polarized features that have no
detectable counterpart in total intensity (de Bruyn & Brentjens
2005).

4. nπ ambiguities and the RMTF

The traditional way to compute the rotation measure of a source
is to measure its polarization angle at several wavelengths and
determine the slope of a straight line through the polarization
angle as a function of λ2. This method suffers from so-called
nπ ambiguity problems. If only a few data points are avail-
able, there may exist multiple RM solutions that are equally
good, but have the polarization angle of the data points wrapped
around one or more turns. Complicated methods have been de-
vised to attempt to circumvent these problems, some of which
are quite successful. An example is the “Pacerman” method
(Dolag et al. 2004; Vogt et al. 2004), which operates on images,
and does a good job in finding and correcting nπ ambiguities
using spatial continuity arguments.

In this section we show that the RMTF is an excellent in-
dicator of possible nπ ambiguity problems. By analyzing the
RMTF, one can take measures to minimize or even eradicate
any potential nπ problems in the experiment in advance. We
also show that using only RM-synthesis to determine Faraday
depths is as accurate as traditional λ2 fitting, but has the added
value of straightforward nπ ambiguity problem detection.

We first consider traditional λ2 fitting. This is done by lin-
ear least squares minimization of a merit function ρ. If the es-
timated errors of all points are equal, then the merit function
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Fig. 6. Comparison of merit function ρ (top) and −‖R‖ (bottom). The
dotted line through ρ is at y = π2/12.

looks like Eq. (49)

zi =
∥∥∥χM(RM, χ0, λ

2
i ) − χi

∥∥∥ (47)

li =




zi zi <
1
2π

zi − π zi ≥ 1
2π

(48)

ρ = N−1
N∑

i=1

l2i (49)

χM is a polarization angle computed by a model (for example
Eq. (9)). χi is the observed polarization angle of the ith data
point. Both χM and χi are modulo π. Equation (48) ensures that
li ∈

[
− 1

2π,
1
2π

〉
. For the sake of simplicity, we assume that we

want to fit a source with a constant polarization angle of 0◦. In
that case Eq. (49) reduces to

ρ = N−1
N∑

i=1

([
RMλ2

i

]
mod

π

2

)2
. (50)

If the fit to the (noiseless) simulated data is perfect, ρ = 0.
When comparing Eq. (50) and Eq. (37), it is seen that ρ = 0 if
and only if ‖R(φ − φ0)‖ = 1. φ0 denotes the Faraday depth of
the source. In this simple case φ = RM. If ‖R(φ−φ0)‖ < 1, then
ρ > 0.

If the model RM is sufficiently different from the actual
RM, one expects the errors li to be approximately uniformly
distributed in the range

[
− 1

2π,
1
2π

〉
. Because the square is taken,

this is equivalent to a uniform distribution in the range
[
0, 1

2π
]
.

The average value of l2i is then given by

〈l2i 〉 =
2
π

∫ 1
2 π

0
x2dx =

π2

12
· (51)

The top graph of Fig. 6 plots ρ. The pattern of sample points
is that of the 126 points used in Fig. 4. In this case, the width
of the pattern is scaled to ∆λ2 = 0.0459 rad m−2. The bottom
graph is −‖R(φ − φ0)‖. The dashed lines are at y = 0 and y =
π2/12. It is seen that ρ is indeed zero when ‖R‖ = 1. Also, the
average value at high RM is indeed equal to π2/12, especially
when ‖R‖ is close to zero. This implies that when ‖R‖ is close

to zero, φλ2 is distributed uniformly between − 1
2π and + 1

2π. Of
course ‖R‖ can be zero for other reasons, but due to the large
number of points and the dense filling of ∆λ2, that is rather
unlikely.

An interesting aspect seen in Fig. 6 is that the envelope of
ρ − π2/12 looks like −‖R‖ when ρ < π2/12. Deep minima of
ρ are associated with high peaks in the RMTF. In fact, they
appear to be approximately proportional to ‖R‖. These deep
minima are closely related to so-called nπ ambiguities in tra-
ditional RM measurements. They are points that fit the data
(almost) equally well as the “true” solution.

The similarity between the envelope of ρ and −‖R‖ is better
demonstrated in Fig. 7. It shows both ρ and −‖R‖ over a large
range in φ. The lefthand panel displays ρ and −‖R‖ for 8 points,
equally spaced in frequency. To facilitate comparison, the total
width of the pattern, ∆λ2, has been scaled to match the width of
the λ2 sampling of Fig. 6. The righthand panel of Fig. 7 shows
ρ and −‖R‖ based on the same input data as Fig. 6. It is obvious
that the RMTF of a 126 point sampling has much lower side
lobes than an 8-point sampling. nπ ambiguities are completely
eliminated.

The lefthand panel of Fig. 8 shows the same RMTF as the
lefthand panel of Fig. 7. The two resonances to the left and right
are due to the near-regularity of the sampling points in λ2 space.
If the frequency intervals at the lower frequencies are stretched
more than at the intervals at higher frequencies, for example
by making them decrease linearly with increasing frequency,
one can make the pattern in λ2 space less regular. The result
is shown in the righthand panel of Fig. 8. The resonances are
now lower and wider. If one requires the highest side lobes to
be at least 5σ lower than unity, then a total S/N of 20 (7 per
channel) is sufficient to prevent nπ ambiguities outside the main
peak of the RMTF. Using the same requirement, in case of the
126 points, a S/N of 6 in total (0.6 per channel) is enough to
prevent nπ ambiguities outside the main peak of the RMTF.

nπ ambiguities are conceptually closely related to the grat-
ing response of a regularly spaced interferometer like the
WSRT. When an interferometer only has baselines that are a
multiple of some fixed distance, then its instantaneous synthe-
sized beam is a collection of parallel fan beams. Each fan beam
has the same peak amplitude. Therefore, without any further
constraints it is impossible to determine in which fan beam the
source is actually located. The same holds true for λ2 sampling.
If one only samples λ2 space at regular intervals, there exist
multiple solutions that fit the data equally well. These solutions
correspond to peaks of unit amplitude in the RMTF: grating re-
sponses.

Figure 6 also shows that there are multiple minima of ρ
within the main lobe of the RMTF. These indicate uncertainties
in the RM smaller than the width of the main peak. We shall
now investigate the uncertainty in RM within the main peak of
‖R‖.

The standard error in the RM when obtained by fitting a
straight line to a plot of χ versus λ2 is given by

σRM =
σχ

σλ2

√
N − 2

(52)
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σλ2 =

√√√

(N − 1)−1
N∑

i=1

λ4
i − λ4

0, (53)

where λ0 is given by Eq. (32) and N is the number of channels.
σχ is either

σχ =
1
2
σ

‖P‖ (54)

if σQ ≈ σU = σ or

σχ =

√
U2σ2

Q + Q2σ2
U

2‖P‖2 (55)

if σQ and σU differ by more than a factor of two or so. σλ2 is
the standard deviation of the distribution of λ2

i points. This is
given by the frequency setup of the instrument. It is a measure
of the effective width of the λ2 distribution. Equation (52) is
the result of straightforward error propagation. For reference, a
full derivation is presented in Appendix A.

In RM-synthesis, one determines the RM of a single source
along the line of sight by fitting, for example, a parabola to
the main peak of ‖F(φ)‖. The detailed procedure is to first find
the brightest point in a critically sampled Faraday dispersion
function (2–3 points per δφ), covering a wide range in φ. This is
followed by oversampling the region around the peak by a large
factor. A parabolic fit to the 10–20 points directly surrounding
the peak then yields the RM of the source.

We have simulated this procedure in order to get a quan-
titative idea of the typical error in RM that one obtains, given
a certain noise level in the Stokes Q and U images, and a cer-
tain set of sample points λ2

i . The results are shown in Fig. 9.
The total signal-to-noise ratio is equal to

√
N − 2 ‖P‖/σ. The

solid line is Eq. (52). The points are standard deviations in RM
computed from 1000 iterations per S/N ratio point. We have as-
sumed the noise in Stokes Q and U to be equal and Gaussian.
We see excellent agreement with the error expected for tradi-
tional λ2 fitting (the straight line). At a S/N ratio less than 4, the
points deviate strongly from the line. This is due to the fact that
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Fig. 9. Comparison between the standard error in RM obtained by
traditional line fitting (line) to simulated RM-synthesis experiments
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the non-Gaussianity of the noise in P is only noticeable close
to the origin of the complex plane. It is stressed that a total S/N
of 4 when having 126 channels implies a S/N per channel of
slightly less than 0.4. It is impossible to determine a polariza-
tion angle with such a low S/N in the case of standard λ2 fitting.

5. RM-synthesis with only Q or U

It is also possible to perform a RM-synthesis with Stokes Q or
U only. There exist many radio observations that have produced
only Stokes I and Q, for example spectral line work with arrays
equipped with linearly polarized feeds, or data from backends
with limited correlator capacity. However, by using only one
of the two Stokes parameters, one loses information about the
sign of the Faraday depth.

The derivation is started with Eq. (25). The identities

Q = (P + P∗)/2 (56)

iU = (P − P∗)/2 (57)

and

G(x) =
∫ ∞

−∞
g(t)eaixtdt ⇔ G∗(−x) =

∫ ∞

−∞
g∗(t)eaixtdt (58)

are needed. After substituting Eqs. (56) and (57) into Eq. (25)
and using Eq. (58), one obtains:

1
2

(
F̃(φ) + F̃∗(−φ)

)
= K

∫ +∞

−∞
Q̃(λ2)e−2iφ(λ2−λ2

0) dλ2 (59)

1
2

(
F̃(φ) − F̃∗(−φ)

)
= K

∫ +∞

−∞
iŨ(λ2)e−2iφ(λ2−λ2

0) dλ2. (60)

The sensitivity to emission at low Faraday depth (less than one
full rotation over the entire band) is limited by the orientation of
the polarization vector. If the emission is mostly in U at λ = λ0,
and hardly in Q, one will not retrieve the full total polarization
when using Stokes Q images only. On the other hand, if all
emission is in Q, one apparently retrieves twice the actual total

polarized intensity. Both cases are usually not very relevant,
because RM-synthesis is mostly applied when emission at high
Faraday depth is expected, where the polarization vector makes
several turns over the observed band.

Figure 10 compares results of a complete RM-synthesis of
data of the Perseus cluster, taken with the WSRT (de Bruyn
& Brentjens 2005), to results of a Q-only RM-synthesis of the
same dataset. It compares both the Galactic foreground emis-
sion at low Faraday depth, and the emission at higher Faraday
depth that we attribute to the Perseus cluster. It is clearly seen
that the noise in the Q-only images is increased with respect to
the complete RM-synthesis. The bar-like feature at α ≈ 3h18m,
δ ≈ +42◦30′ is already visible in the Q-only images. This
demonstrates that one actually can detect faint emission at high
Faraday depths using only Stokes Q or U images. Unless the
situation is simple, meaning only one discrete source along the
line of sight, these images are unfortunately not useful in a
quantitative sense. However, it is an efficient way to discover
weak, Faraday rotated, polarized emission in existing datasets,
which can then be followed up with full polarization observa-
tions.

6. General experiment layout

Three main parameters are involved when planning a rotation-
measure experiment, namely the channel width δλ2, the width
of the λ2 distribution ∆λ2, and the shortest wavelength squared
λ2

min. They are summarized in Fig. 11. These parameters deter-
mine respectively the maximum observable Faraday depth, the
resolution in φ space, and the largest scale in φ space to which
one is sensitive. Estimates for the FWHM of the main peak of
the RMTF, the scale in φ space to which sensitivity has dropped
to 50% and the maximum Faraday depth to which one has more
than 50% sensitivity are approximately

δφ ≈ 2
√

3
∆λ2

(61)

max-scale ≈ π

λ2
min

(62)

‖φmax‖ ≈
√

3
δλ2
· (63)

In these equations we assumed a top hat weight function which
is 1 between λ2

min and λ2
max and zero elsewhere.

It is interesting to compare Eqs. (61) and (62). This is where
the analogy between RM-synthesis and regular synthesis imag-
ing breaks down. In synthesis imaging, the width of the synthe-
sized beam is inversely proportional to the maximum absolute
uv vector. That is, the distance between the origin and the uv
point most distant from it. The maximum scale that one can
measure depends on the shortest baseline. Therefore one is al-
ways maximally sensitive to structures smaller than the width
of the synthesized beam.

This is quite different in RM-synthesis. In RM-synthesis it
is possible that a source is unresolved in the sense that its extent
in φ is less than the width of the RMTF, yet “resolved” out
because one has not sampled the typical φ-scale of the source
due to lack of small λ2 points. Equation (61) shows that the
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Fig. 11. The three instrumental parameters that determine the output
of a Faraday rotation experiment.

width of the RMTF depends on the width of the λ2 distribution,
not on the largest λ2 measured. Nevertheless the largest scale
in φ that one is sensitive to is set by the smallest λ2 as is shown
in Eq. (62). In order to truly resolve Faraday thick clouds in φ
space in the sense that one could see internal structure, the main
peak of the RMTF should be narrower than the maximum scale

to which one is sensitive. Because 2
√

3 ≈ π, the requirement
for resolving Faraday thick structures is

λ2
min < ∆λ

2. (64)

See Appendix B for simulations illustrating this point.
For deconvolution the RMTF should be known as accu-

rately as possible for all sources within the field of view and
along the line of sight. The main problems are:

– frequency dependence of the primary beam attenuation;
– frequency dependence of the instrumental polarization;
– the intrinsic emission spectra of the sources;
– frequency dependence of the synthesized beam size.

The last point is easily compensated for by using the same uv-
taper for all channel maps. The first two points can be allevi-
ated to a large extent by observing in mosaic mode. The pri-
mary beam attenuation can cause very steep artificial spectral
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indices. These can be as steep as α ≈ −1.5 near half power
and α ≈ −5 near the −10 dB point at the WSRT. Fortunately,
the primary beam attenuation is usually known accurately.
Therefore one can predict W(λ2) for any point in the field of
view, enabling one to accurately compute the local RMTF at
any pixel using for example Eq. (37).

After primary beam correction, one should align the chan-
nel maps spectrally. Our preferred method is to determine the
average total intensity of a large sample of sources, and scale
the images until the average of the ensemble in a particular
channel map matches the value at λ = λ0. Using this approach,
the spectra of as yet undetected emission should be approxi-
mately flat to within a spectral index range of ±1. Of course
one could flatten source spectra on an individual basis. This is
only useful if one is interested in bright sources that are easily
detected in individual channels.

A convenient property of RM-synthesis is that more-or-less
frequency independent instrumental problems end up at φ = 0,
convolved with the RMTF. This means that instrumental prob-
lems are highly reduced at higher absolute Faraday depths. In
other words: at high Faraday depth, we “wind-up” the instru-
mental polarization problems, while “unwinding” the Faraday
rotated cosmic polarization signals.

7. Conclusions

We have extended the work of Burn (1966) to the cases of lim-
ited sampling of λ2 space and some spectral dependencies. We
have introduced the RMTF, which is an excellent predictor of
nπ ambiguity problems in the frequency setup. RM-synthesis
can be implemented very efficiently on modern computers. For
example, a RM- synthesis of 126 input maps of 10242 pixels,
yielding 3 × 100 output maps of 10242 pixels (P, Q, and U)
takes less than 5 min on a laptop equipped with a 2 GHz Intel
Pentium processor and 512 MB of RAM.

Because the analysis is easily applied to wide fields, one
can conduct very fast RM surveys of weak sources. Difficult
situations, for example multiple sources along the line of sight,
are easily detected. Under certain conditions, it is even possible
to recover the emission as a function of Faraday depth within a
single cloud of ionized gas.

Instrumental problems that are weakly frequency indepen-
dent, or have a very characteristic frequency dependence, are
easily separated from cosmic signals that are only subject to
Faraday rotation.

Rotation measure synthesis has already been successful in
discovering widespread, weak, polarized emission associated
with the Perseus cluster (de Bruyn & Brentjens 2005). In sim-
ple, high signal to noise situations it is as good as traditional
linear fits to χ versus λ2 plots. However, when the situation is
more complex, or very weak polarized emission at high rota-
tion measures is expected, it is the only viable option.
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Appendix A: Standard errors in RM estimations

The expected standard errors in RM/Faraday depth and χ0 are
useful quantities when planning a rotation measure experiment.
In this appendix we present a formal derivation.

From Eqs. (7) and (8) we have

‖P‖ =
√

Q2 + U2 (A.1)

χ =
1
2

tan−1 U
Q
· (A.2)

We discriminate two cases. The first is σQ ≈ σU = σ, the
second is σQ � σU or σQ � σU, where � and � indicate
a difference of more than a factor of two. σQ and σU are the
RMS image noise in individual Q and U channel maps.

The derivation is done in two steps. First we derive the stan-
dard error in the polarization angle and total polarization, σχ
and σP of measurements in individual channels. Then we ap-
ply standard results for the least squares fit of a straight line
to obtain σφ and σχ0 , the standard errors in rotation measure /
Faraday depth and the polarization angle at λ = 0.

Error propagation (Squires 2001) gives us

σ2
P =

(
∂‖P‖
∂Q

)2

σ2
Q +

(
∂‖P‖
∂U

)2

σ2
U (A.3)

σ2
χ =

(
∂χ

∂Q

)2

σ2
Q +

(
∂χ

∂U

)2

σ2
U. (A.4)

The partial derivatives for σP are
(
∂‖P‖
∂Q

)2

=
Q2

Q2 + U2
(A.5)

(
∂‖P‖
∂U

)2

=
U2

Q2 + U2
· (A.6)

Inserting this in Eq. (A.3) gives

σ2
P =

Q2

‖P‖2σ
2
Q +

U2

‖P‖2σ
2
U. (A.7)

In the most general case, this cannot be simplified any further.
Nevertheless, when σQ ≈ σU = σ, Eq. (A.7) can be simplified
to

σ2
P = σ

2. (A.8)

The partial derivatives needed for σ2
χ are

∂ 1
2 tan−1 U

Q

∂Q
=

1
4

U2

(
Q2 + U2)2

(A.9)

∂ 1
2 tan−1 U

Q

∂U
=

1
4

Q2

(
Q2 + U2

)2
· (A.10)

Inserting these in Eq. (A.4) gives

σ2
χ =

U2σ2
Q + Q2σ2

U

4‖P‖4 · (A.11)

This result can only be simplified further if σQ ≈ σU = σ:

σ2
χ =

1
4
σ2

‖P‖2 · (A.12)

When fitting a straight line y = ax + b to data with equal esti-
mated standard errors per data point, the standard error in the
slope of the line is (Squires 2001)

σ2
a ≈

1
N − 2

Σi (yi − axi − b)2

Σix2
i − N−1 (Σixi)2

· (A.13)

Now one substitutes φ = a, χ0 = b, χ = y, and λ2 = x. A ro-
tation measure of 0 may be assumed without loss of generality.
The equation then becomes

σ2
φ =

1
N − 2

Σiχ
2
i

Σi

(
λ2

i

)2 − N−1
(
Σiλ

2
i

) · (A.14)

The variance of the polarization angle distribution is given by

σ2
χ =

1
N − 1

Σiχ
2
i − 〈χ〉, (A.15)

where 〈〉 denotes averaging. Combining Eqs. (A.14) and (A.15)
and using 〈χ〉 = 0 one obtains

σ2
φ =

N − 1
N − 2

σ2
χ

Σ
(
λ2

i

)2 − N−1(Σiλ
2
i )2
· (A.16)

The variance of the λ2 distribution is

σ2
λ2 =

1
N − 1

(
Σiλ

4
i − N−1

(
Σiλ

2
i

)2
)
. (A.17)

This is a measure of the effective width of the λ2 coverage.
Equation (A.16) may now be simplified by substituting

Eqs. (A.17) and (A.12). The final result is:

σ2
φ =

σ2

4 (N − 2) ‖P‖2σ2
λ2

· (A.18)

The standard error in in χ0, σχ0 is derived in a similar fashion.
One starts with

σ2
b ≈



Σi x2

i − N−1 (Σxi)2

N
+ 〈x〉2


σ2

a . (A.19)

After substituting Eqs. (A.17) and (32) and some rearranging,
the final result is:

σ2
χ0
=

σ2

4 (N − 2) ‖P‖2



N − 1
N
+
λ4

0

σ2
λ2


 · (A.20)

Appendix B: Example simulations

In this appendix we show, as an illustration, three model runs
of an RM-synthesis of an artificial Faraday dispersion func-
tion, measured with a realistic frequency sampling. We hope
that these figures aid in understanding the most important as-
pects of RM-synthesis specifically and rotation measure work
in general.

Sources that are extended in the plane of the sky have
their surface brightness measured in Jy per steradian. For point
sources the flux in Jy is sufficient to characterize it. The re-
spective brightness units for sources that are both extended in
the plane of the sky and in Faraday depth are Jy steradian−1
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Fig. B.1. Wavelength range: 3.6–50 cm.

(rad m−2)−1 or Jy m2 rad−3. Sources that are extended in the
plane of the sky and point-like in φ space have their brightness
in φ space measured in Jy steradian−1. The brightness of the
measured Faraday dispersion function has units of Jy (beam on
the sky)−1 (rmtf)−1. Sources that are point-like in the plane of
the sky have the steradian−1 or (beam on the sky)−1 removed.

In order to keep the units simple, we made all simulated
sources point-like in the sky plane. Hence the units used in the
figures in this appendix are:

– top right and bottom right: Jy;
– middle left and middle right: dimensionless;
– top left: Jy m2 rad−1;
– bottom left: Jy rmtf−1.

The lefthand column of Fig. B.1, Fig. B.2, and Fig. B.3 is the
situation in φ space. The righthand column is the corresponding
situation in λ2 space. Pictures in one row are converted into
each other by Fourier relations (15) (left to right) and (25) (right
to left). The top row is the input situation. It is the same in
all three figures. The lefthand panel represents the polarized
flux per unit Faraday depth in Jy per (rad m−2). The righthand
panel is the polarized flux in Jy. The example sources all have
flat spectra. The second row shows the RMTF in the lefthand
panel and the sampling function in the righthand panel. The
third row shows the result of applying the second row to the
first row. That is, multiplication of top right and middle right
give bottom right and top left convolved with middle left after
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Fig. B.2. Wavelength range: 60–78 cm.

λ2 bandpass filtering gives bottom left. Except for the weight of
the samples in λ2 space, all quantities are complex. For clarity,
we have only shown the amplitude here.

The RMTF in all three figures is the same because the pat-
tern and width of the λ2 coverage is exactly the same for all of
them. The only difference is the absolute position of the pattern.
Figure B.1 has λ2

min = 3.62 cm2, Fig. B.2 has λ2
min = 602 cm2,

and Fig. B.3 has λ2
min = 812 cm2.

The three sources in this simulation have different proper-
ties to illustrate different cases.

A: φ = −10 rad m−2, delta function of φ, total flux density is
10 Jy. In synthesis imaging, this would be the equivalent of
a point source;

B: 30 ≤ φ ≤ 50 rad m−2, multiple RMTFs wide in φ, F(φ) =
2 Jy m2 rad−1, total flux density is 40 Jy. In synthesis imag-
ing, this would be the equivalent of an extended source;

C: 90 ≤ φ ≤ 100 rad m−2, roughly one RMTF wide in φ,
F(φ) = 3 Jy m2 rad−1, total flux density is 30 Jy. In syn-
thesis imaging, this would be the equivalent of a barely re-
solved source.

Because source A is a delta function with respect to φ, the am-
plitude of its Fourier transform is the same at all λ2. Therefore,
the source appears in all three figures with equal amplitude.
The peak is slightly higher than 10 Jy rmtf−1 in Fig. B.1 and
Fig. B.2 due to side lobes of the responses of sources B and C.
In Fig. B.3 the retrieved flux of sources B and C has collapsed
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Fig. B.3. Wavelength range: 81–95 cm.

so much that the response to source A is practically the same
as the RMTF, especially to the left of source A.

Source B represents the other extreme. Being several
RMTFs wide, one requires λ2

min � ∆λ2 in order to recover the
full flux of the source. Only Fig. B.1 meets this requirement.
In Fig. B.2, only two bumps at the edges of the source remain.
Because in Fig. B.2 we only sample smaller scales in φ due
to the larger λ2

min, the only parts of source B that remain are
the parts where these smaller scales are important: the edges.
Source B has practically disappeared in Fig. B.3.

Source C is of an intermediate type. Because its typical φ-
scale is narrower than source B, there is a larger fraction of the
total flux recovered in Figs. B.2 and B.3.

In analogy to radio interferometric observations, one could
state that the λ2 sampling in Fig. B.1 corresponds to a con-
nected element array, where one samples all scales up to λ2

max
approximately equally well. Figure B.3 corresponds to a VLBI
observation, where one misses the short spacings and therefore
is insensitive to extended emission. A fundamental difference
with radio interferometry is that the resolution in φ space is de-
termined by the width of the λ2 distribution, ∆λ2, and not by
the largest λ2 sampled. Hence one could encounter situations
where a source is not resolved in the sense that the thickness of
the source in φ is much less than the width of the RMTF, while
at the same time it is resolved out in the sense that one has not
sampled sufficiently short λ2 points to detect the source.


