Intensity scintillations of cosmic radio sources are used to study
astrophysical plasmas like the ionosphere, the solar wind, and the interstellar
medium. Normally these observations are relatively narrow band. With Low
Frequency Array (LOFAR) technology at the Kilpisj\"arvi Atmospheric Imaging
Receiver Array (KAIRA) station in northern Finland we have observed
scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were
discovered in interstellar scintillations of pulsars, can provide precise
estimates of the distance and velocity of the scattering plasma. Here we report
the first observations of such arcs in the ionosphere and the first broad-band
observations of arcs anywhere, raising hopes that study of the phenomenon may
similarly improve the analysis of ionospheric scintillations. These
observations were made of the strong natural radio source Cygnus-A and covered
the entire 30-250\,MHz band of KAIRA. Well-defined parabolic arcs were seen
early in the observations, before transit, and disappeared after transit
although scintillations continued to be obvious during the entire observation.
We show that this can be attributed to the structure of Cygnus-A. Initial
results from modeling these scintillation arcs are consistent with simultaneous
ionospheric soundings taken with other instruments, and indicate that
scattering is most likely to be associated more with the topside ionosphere
than the F-region peak altitude. Further modeling and possible extension to
interferometric observations, using international LOFAR stations, are
discussed.Comment: 11 pages, 17 figure