263 research outputs found

    The Value of Success: Acquiring Gains, Avoiding Losses, and Simply Being Successful

    Get PDF
    A large network of spatially contiguous, yet anatomically distinct regions in medial frontal cortex is involved in reward processing. Although it is clear these regions play a role in critical aspects of reward-related learning and decision-making, the individual contributions of each component remains unclear. We explored dissociations in reward processing throughout several key regions in the reward system and aimed to clarify the nature of previously observed outcome-related activity in a portion of anterior medial orbitofrontal cortex (mOFC). Specifically, we tested whether activity in anterior mOFC was related to processing successful actions, such that this region would respond similarly to rewards with and without tangible benefits, or whether this region instead encoded only quantifiable outcome values (e.g., money). Participants performed a task where they encountered monetary gains and losses (and non-gains and non-losses) during fMRI scanning. Critically, in addition to the outcomes with monetary consequences, the task included trials that provided outcomes without tangible benefits (participants were simply told that they were correct or incorrect). We found that anterior mOFC responded to all successful outcomes regardless of whether they carried tangible benefits (monetary gains and non-losses) or not (controls). These results support the hypothesis that anterior mOFC processes rewards in terms of a common currency and is capable of providing reward-based signals for everything we value, whether it be primary or secondary rewards or simply a successful experience without objectively quantifiable benefits

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    Get PDF
    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled

    The role of protected areas in the avoidance of anthropogenic conversion in a high pressure region : a matching method analysis in the core region of the brazilian cerrado

    Get PDF
    Global efforts to avoid anthropogenic conversion of natural habitat rely heavily on the establishment of protected areas. Studies that evaluate the effectiveness of these areas with a focus on preserving the natural habitat define effectiveness as a measure of the influence of protected areas on total avoided conversion. Changes in the estimated effectiveness are related to local and regional differences, evaluation methods, restriction categories that include the protected areas, and other characteristics. The overall objective of this study was to evaluate the effectiveness of protected areas to prevent the advance of the conversion of natural areas in the core region of the Brazil’s Cerrado Biome, taking into account the influence of the restriction degree, governmental sphere, time since the establishment of the protected area units, and the size of the area on the performance of protected areas. The evaluation was conducted using matching methods and took into account the following two fundamental issues: control of statistical biases caused by the influence of covariates on the likelihood of anthropogenic conversion and the non-randomness of the allocation of protected areas throughout the territory (spatial correlation effect) and the control of statistical bias caused by the influence of auto-correlation and leakage effect. Using a sample design that is not based on ways to control these biases may result in outcomes that underestimate or overestimate the effectiveness of those units. The matching method accounted for a bias reduction in 94–99% of the estimation of the average effect of protected areas on anthropogenic conversion and allowed us to obtain results with a reduced influence of the auto-correlation and leakage effects. Most protected areas had a positive influence on the maintenance of natural habitats, although wide variation in this effectiveness was dependent on the type, restriction, governmental sphere, size and age group of the unit

    A spill over effect of entrepreneurial orientation on technological innovativeness:an outlook of universities and research based spin offs

    Get PDF
    partially_open5siBy shifting towards Romer’s (Am Econ Rev 94:1002–1037, 1986) economy and so the spread of knowledge economy, universities started to adopt a collaborative approach with their entrepreneurial ecosystem. They turn out to be risk taker, autonomous, proactive, competitive, and innovative. In a nutshell, they are entrepreneurial oriented with the aim to generate new innovative ventures, known as research-based spin offs. Doubly, this has induced an improvement of technology transfer and the degree of entrepreneurship in the current knowledge economy. However there still is a paucity of studies on the spill over effect of entrepreneurial orientated universities and research-based spin off on technology transfer need to be more explored. Therefore, the article investigates the link between entrepreneurial orientation and such spill overs by offering an outlook of two universities and two research-based spin offs in the United Kingdom. The scope is to provide a deep view of technological innovativeness in a research context, entrepreneurial oriented. Our research suggests that entrepreneurial attitude has become an imperative to succeed in the context where British institutions currently operate. Entrepreneurship brings the necessary technological innovation to the university and its students, which results in better positioning of the university at national and international levels, with the subsequent impact on their ability to attract not only new students and academics but also funding to conduct their research.openScuotto, Veronica; Del Giudice, Manlio; Garcia-Perez, Alexeis; Orlando, Beatrice; Ciampi, FrancescoScuotto, Veronica; Del Giudice, Manlio; Garcia-Perez, Alexeis; Orlando, Beatrice; Ciampi, Francesc

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Interpopulation Variation in the Atlantic Salmon Microbiome Reflects Environmental and Genetic Diversity

    Get PDF
    The microbiome has a crucial influence on host phenotype, and is of broad interest to ecological and evolutionary research. Yet, the extent of variation that occurs in the microbiome within and between populations is unclear. We characterised the skin and gut microbiome of seven populations of juvenile Atlantic salmon (Salmo salar) inhabiting a diverse range of environments, including hatchery-reared and wild populations. We found shared skin OTUs across all populations and core gut microbiota for all wild fish, but the diversity and structure of both skin and gut microbial communities were distinct between populations. There was a marked difference between the gut microbiome of wild and captive fish. Hatchery-reared fish had lower intestinal microbial diversity, lacked core microbiota found in wild fish, and showed altered community structure and function. Captive fish skin and gut microbiomes were also less variable within populations, reflecting more uniform artificial rearing conditions. Surrounding water influenced the microbiome of the gut and, especially, the skin, but could not explain the degree of variation observed between populations. For both the gut and skin, we found that there was greater difference in microbial community structure between more genetically distinct fish populations, and also that population genetic diversity was positively correlated with microbiome diversity. However, diet is likely to be the major factor contributing to the large differences in gut microbiota between wild and captive fish. Our results highlight the scope of inter-population variation in the Atlantic salmon microbiome, and offer insights into the deterministic factors contributing to this
    corecore