286 research outputs found

    Deletion of the EphA2 receptor exacerbates myocardial injury and the progression of ischemic cardiomyopathy

    Get PDF
    EphrinA1-EphA-receptor signaling is protective during myocardial infarction (MI). The EphA2-receptor (EphA2-R) potentially mediates cardiomyocyte survival. To determine the role of the EphA2-R in acute non-reperfused myocardial injury in vivo, infarct size, inflammatory cell density, NF-κB, p-AKT/Akt, and MMP-2 protein levels, and changes in ephrinA1/EphA2-R gene expression profile were assessed 4 days post-MI in B6129 wild-type (WT) and EphA2-R-mutant (EphA2-R-M) mice lacking a functional EphA2-R. Fibrosis, capillary density, morphometry of left ventricular chamber and infarct dimensions, and cardiac function also were measured 4 weeks post-MI to determine the extent of ventricular remodeling. EphA2-R-M infarct size and area of residual necrosis were 31.7% and 113% greater than WT hearts, respectively. Neutrophil and macrophage infiltration were increased by 46% and 84% in EphA2-R-M hearts compared with WT, respectively. NF-κB protein expression was 1.9-fold greater in EphA2-R-M hearts at baseline and 56% less NF-κB after infarction compared with WT. EphA6 gene expression was 2.5-fold higher at baseline and increased 9.8-fold 4 days post-MI in EphA2-R-M hearts compared with WT. EphrinA1 gene expression in EphA2-R-M hearts was unchanged at baseline and decreased by 42% 4 days post-MI compared with WT hearts. EphA2-R-M hearts had 66.7% less expression of total Akt protein and 59% less p-Akt protein than WT hearts post-MI. EphA2-R-M hearts 4 weeks post-MI had increased chamber dilation and interstitial fibrosis and decreased MMP-2 expression and capillary density compared with WT. In conclusion, the EphA2-R is necessary to appropriately modulate the inflammatory response and severity of early injury during acute MI, thereby influencing the progression of ischemic cardiomyopathy

    EphA2 is a functional receptor for the growth factor progranulin.

    Get PDF
    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases

    The CCL2 chemokine is a negative regulator of autophagy and necrosis in liminal B breast cancer cells

    Get PDF
    Luminal A and B breast cancers are the most prevalent forms of breast cancer diagnosed in women. Compared to luminal A breast cancer patients, patients with luminal B breast cancers experience increased disease recurrence and lower overall survival. The mechanisms that regulate the luminal B subtype remain poorly understood. The chemokine CCL2 is overexpressed in breast cancer, correlating with poor patient prognosis. The purpose of this study was to determine the role of CCL2 expression in luminal B breast cancer cells. Breast tissues, MMTV-PyVmT and MMTV-Neu transgenic mammary tumors forming luminal B-like lesions, were immunostained for CCL2 expression. To determine the role of CCL2 in breast cancer cells, CCL2 gene expression was silenced in mammary tumor tissues and cells using TAT cell-penetrating peptides non-covalently cross linked to siRNAs (Ca-TAT/siRNA). CCL2 expression was examined by ELISA and flow cytometry. Cell growth and survival were analyzed by flow cytometry, immunocytochemistry, and fluorescence microscopy. CCL2 expression was significantly increased in luminal B breast tumors, MMTV-PyVmT and MMTV-Neu mammary tumors, compared or normal breast tissue or luminal A breast tumors. Ca-TAT delivery of CCL2 siRNAs significantly reduced CCL2 expression in PyVmT mammary tumors, and decreased cell proliferation and survival. CCL2 gene silencing in PyVmT carcinoma cells or BT474 luminal B breast cancer cells decreased cell growth and viability associated with increased necrosis and autophagy. CCL2 expression is overexpressed in luminal B breast cancer cells and is important for regulating cell growth and survival by inhibiting necrosis and autophagy

    Eph receptors in breast cancer: roles in tumor promotion and tumor suppression

    Get PDF
    Eph receptor tyrosine kinase signaling regulates cancer initiation and metastatic progression through multiple mechanisms. Studies of tumor-cell-autonomous effects of Eph receptors demonstrate their dual roles in tumor suppression and tumor promotion. In addition, Eph molecules function in the tumor microenvironment, such as in vascular endothelial cells, influencing the ability of these molecules to promote carcinoma progression and metastasis. The complex nature of Eph receptor signaling and crosstalk with other receptor tyrosine kinases presents a unique challenge and an opportunity to develop therapeutic intervention strategies for targeting breast cancer

    Eph/Ephrin Profiling in Human Breast Cancer Reveals Significant Associations between Expression Level and Clinical Outcome

    Get PDF
    Pre-clinical studies provide compelling evidence that Eph family receptor tyrosine kinases (RTKs) and ligands promote cancer growth, neovascularization, invasion, and metastasis. Tumor suppressive roles have also been reported for the receptors, however, creating a potential barrier for clinical application. Determining how these observations relate to clinical outcome is a crucial step for translating the biological and mechanistic data into new molecularly targeted therapies. We investigated eph and ephrin expression in human breast cancer relative to endpoints of overall and/or recurrence-free survival in large microarray datasets. We also investigated protein expression in commercial human breast tissue microarrays (TMA) and Stage I prognostic TMAs linked to recurrence outcome data. We found significant correlations between ephA2, ephA4, ephA7, ephB4, and ephB6 and overall and/or recurrence-free survival in large microarray datasets. Protein expression in TMAs supported these trends. While observed no correlation between ephrin ligand expression and clinical outcome in microarray datasets, ephrin-A1 and EphA2 protein co-expression was significantly associated with recurrence in Stage I prognostic breast cancer TMAs. Our data suggest that several Eph family members are clinically relevant and tractable targets for intervention in human breast cancer. Moreover, profiling Eph receptor expression patterns in the context of relevant ligands and in the context of stage may be valuable in terms of diagnostics and treatment

    Selective inhibition of mTORC1 in tumor vessels increases antitumor immunity.

    Get PDF
    A tumor blood vessel is a key regulator of tissue perfusion, immune cell trafficking, cancer metastasis, and therapeutic responsiveness. mTORC1 is a signaling node downstream of multiple angiogenic factors in the endothelium. However, mTORC1 inhibitors have limited efficacy in most solid tumors, in part due to inhibition of immune function at high doses used in oncology patients and compensatory PI3K signaling triggered by mTORC1 inhibition in tumor cells. Here we show that low-dose RAD001/everolimus, an mTORC1 inhibitor, selectively targets mTORC1 signaling in endothelial cells (ECs) without affecting tumor cells or immune cells, resulting in tumor vessel normalization and increased antitumor immunity. Notably, this phenotype was recapitulated upon targeted inducible gene ablation of the mTORC1 component Raptor in tumor ECs (RaptorECKO). Tumors grown in RaptorECKO mice displayed a robust increase in tumor-infiltrating lymphocytes due to GM-CSF-mediated activation of CD103+ dendritic cells and displayed decreased tumor growth and metastasis. GM-CSF neutralization restored tumor growth and metastasis, as did T cell depletion. Importantly, analyses of human tumor data sets support our animal studies. Collectively, these findings demonstrate that endothelial mTORC1 is an actionable target for tumor vessel normalization, which could be leveraged to enhance antitumor immune therapies

    Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution

    Get PDF
    Breast cancers that occur in women 2–5 years postpartum are more frequently diagnosed at metastatic stages and correlate with poorer outcomes compared with breast cancers diagnosed in young, premenopausal women. The molecular mechanisms underlying the malignant severity associated with postpartum breast cancers (ppBCs) are unclear but relate to stromal wound-healing events during postpartum involution, a dynamic process characterized by widespread cell death in milk-producing mammary epithelial cells (MECs). Using both spontaneous and allografted mammary tumors in fully immune–competent mice, we discovered that postpartum involution increases mammary tumor metastasis. Cell death was widespread, not only occurring in MECs but also in tumor epithelium. Dying tumor cells were cleared through receptor tyrosine kinase MerTK–dependent efferocytosis, which robustly induced the transcription of genes encoding wound-healing cytokines, including IL-4, IL-10, IL-13, and TGF-Ξ². Animals lacking MerTK and animals treated with a MerTK inhibitor exhibited impaired efferocytosis in postpartum tumors, a reduction of M2-like macrophages but no change in total macrophage levels, decreased TGF-Ξ² expression, and a reduction of postpartum tumor metastasis that was similar to the metastasis frequencies observed in nulliparous mice. Moreover, TGF-Ξ² blockade reduced postpartum tumor metastasis. These data suggest that widespread cell death during postpartum involution triggers efferocytosis-induced wound-healing cytokines in the tumor microenvironment that promote metastatic tumor progression

    Lithocholic Acid Is an Eph-ephrin Ligand Interfering with Eph-kinase Activation

    Get PDF
    Eph-ephrin system plays a central role in a large variety of human cancers. In fact, alterated expression and/or de-regulated function of Eph-ephrin system promotes tumorigenesis and development of a more aggressive and metastatic tumour phenotype. In particular EphA2 upregulation is correlated with tumour stage and progression and the expression of EphA2 in non-trasformed cells induces malignant transformation and confers tumorigenic potential. Based on these evidences our aim was to identify small molecules able to modulate EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified lithocholic acid (LCA) as a competitive and reversible ligand inhibiting EphA2-ephrinA1 interaction (Kiβ€Š=β€Š49 Β΅M). Since each ephrin binds many Eph receptors, also LCA does not discriminate between different Eph-ephrin binding suggesting an interaction with a highly conserved region of Eph receptor family. Structurally related bile acids neither inhibited Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and colon adenocarcinoma cell lines (IC50β€Š=β€Š48 and 66 Β΅M, respectively) without affecting cell viability or other receptor tyrosine-kinase (EGFR, VEGFR, IGFR1Ξ², IRKΞ²) activity. LCA did not inhibit the enzymatic kinase activity of EphA2 at 100 Β΅M (LANCE method) confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells. In conclusion, our findings identified a hit compound useful for the development of molecules targeting ephrin system. Moreover, as ephrin signalling is a key player in the intestinal cell renewal, our work could provide an interesting starting point for further investigations about the role of LCA in the intestinal homeostasis

    Human Cataract Mutations in EPHA2 SAM Domain Alter Receptor Stability and Function

    Get PDF
    The cellular and molecular mechanisms underlying the pathogenesis of cataracts leading to visual impairment remain poorly understood. In recent studies, several mutations in the cytoplasmic sterile-Ξ±-motif (SAM) domain of human EPHA2 on chromosome 1p36 have been associated with hereditary cataracts in several families. Here, we have investigated how these SAM domain mutations affect EPHA2 activity. We showed that the SAM domain mutations dramatically destabilized the EPHA2 protein in a proteasome-dependent pathway, as evidenced by the increase of EPHA2 receptor levels in the presence of the proteasome inhibitor MG132. In addition, the expression of wild-type EPHA2 promoted the migration of the mouse lens epithelial Ξ±TN4-1 cells in the absence of ligand stimulation, whereas the mutants exhibited significantly reduced activity. In contrast, stimulation of EPHA2 with its ligand ephrin-A5 eradicates the enhancement of cell migration accompanied by Akt activation. Taken together, our studies suggest that the SAM domain of the EPHA2 protein plays critical roles in enhancing the stability of EPHA2 by modulating the proteasome-dependent process. Furthermore, activation of Akt switches EPHA2 from promoting to inhibiting cell migration upon ephrin-A5 binding. Our results provide the first report of multiple EPHA2 cataract mutations contributing to the destabilization of the receptor and causing the loss of cell migration activity

    Prognostic Breast Cancer Signature Identified from 3D Culture Model Accurately Predicts Clinical Outcome across Independent Datasets

    Get PDF
    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic value for both ER-positive and ER-negative breast cancer. The signature was selected using a novel biological approach and hence holds promise to represent the key biological processes of breast cancer
    • …
    corecore