3,246 research outputs found
Using Perturbative Least Action to Recover Cosmological Initial Conditions
We introduce a new method for generating initial conditions consistent with
highly nonlinear observations of density and velocity fields. Using a variant
of the Least Action method, called Perturbative Least Action (PLA), we show
that it is possible to generate several different sets of initial conditions,
each of which will satisfy a set of highly nonlinear observational constraints
at the present day. We then discuss a code written to test and apply this
method and present the results of several simulations.Comment: 24 pages, 6 postscript figures. Accepted for publication in
Astrophysical Journa
A prototype of fine granularity lead-scintillating fiber calorimeter with imaging read out
The construction and tests performed on a smal prototype of lead-scintillating fiber calorimeter instrumented with multianode photomultipliers are reported. The prototype is 15 cm wide, 15 radiation lenghts deep and is made of 200 layers of 50 cm long fibers. One side of the calorimeter has been instrumented with an array of 3 × 5 multianode R8900-M16 Hamamatsu photomultipliers, each segmented with a matrix of 4 × 4 anodes. The read-out granularity is 240 pixels 11 × 11 mm 2 reading about 64 fibers each. They are interfaced to the 6 × 6 mm 2 pixelled photocade with truncated pyramid light guides made of BC-800 plastic, UV transparent. Moreover each photomultiplier provides also the OR information of the last 12 dynodes. This information can be useful for trigger purposes. The response of the individual anodes, their relative gain and cross-talk has been measured with a 404 nm picosecond laser illuminating only a few fibers on the opposite side of the read-out. We also present first results of the calorimeter response to cosmic rays and electron beam data collected at BTF facility in Frascati
Utilities Substations in Smart District Heating Networks
Abstract In the last decades the concept of distributed generation – i.e. the installation of (electrical and/or thermal) energy production systems at the final users – was born and found gradually increasing diffusion. For what concerns the electrical production, the distributed generation systems are directly connected to the National Electricity Transmission Grid, allowing a bidirectional energy flux at the utilities and giving rise to the so-called smart grid. In this scenario and considering that, even thanks to the direction taken by European regulations, in the European territory there is already a large number of thermal power generation's distributed systems (e.g. solar thermal panels), in the near future the concept of smart grid could be extended to the heat sector, especially in relation to District Heating Networks (DHNs). As a consequence, with the aim of analyzing the penetration of this type of networks, several possible layouts for the exchange utilities' substation have been developed and will be presented in this study. Such layouts allow to optimize thermal exchange, as a function of network design temperatures (for both the supply and the return), of utilities' thermal power requirement and depending on the characteristics of the production system
Tracing the Warm Hot Intergalactic Medium in the local Universe
We present a simple method for tracing the spatial distribution and
predicting the physical properties of the Warm-Hot Intergalactic Medium (WHIM),
from the map of galaxy light in the local universe. Under the assumption that
biasing is local and monotonic we map the ~ 2 Mpc/h smoothed density field of
galaxy light into the mass density field from which we infer the spatial
distribution of the WHIM in the local supercluster. Taking into account the
scatter in the WHIM density-temperature and density-metallicity relation,
extracted from the z=0 outputs of high-resolution and large box size
hydro-dynamical cosmological simulations, we are able to quantify the
probability of detecting WHIM signatures in the form of absorption features in
the X-ray spectra, along arbitrary directions in the sky. To illustrate the
usefulness of this semi-analytical method we focus on the WHIM properties in
the Virgo Cluster region.Comment: 16 pages 11 Figures. Discussion clarified, alternative methods
proposed. Results unchanged. MNRAS in pres
Studying the WHIM with Gamma Ray Bursts
We assess the possibility to detect and characterize the physical state of
the missing baryons at low redshift by analyzing the X-ray absorption spectra
of the Gamma Ray Burst [GRB] afterglows, measured by a micro calorimeters-based
detector with 3 eV resolution and 1000 cm2 effective area and capable of fast
re-pointing, similar to that on board of the recently proposed X-ray satellites
EDGE and XENIA. For this purpose we have analyzed mock absorption spectra
extracted from different hydrodynamical simulations used to model the
properties of the Warm Hot Intergalactic Medium [WHIM]. These models predict
the correct abundance of OVI absorption lines observed in UV and satisfy
current X-ray constraints. According to these models space missions like EDGE
and XENIA should be able to detect about 60 WHIM absorbers per year through the
OVII line. About 45 % of these have at least two more detectable lines in
addition to OVII that can be used to determine the density and the temperature
of the gas. Systematic errors in the estimates of the gas density and
temperature can be corrected for in a robust, largely model-independent
fashion. The analysis of the GRB absorption spectra collected in three years
would also allow to measure the cosmic mass density of the WHIM with about 15 %
accuracy, although this estimate depends on the WHIM model. Our results suggest
that GRBs represent a valid, if not preferable, alternative to Active Galactic
Nuclei to study the WHIM in absorption. The analysis of the absorption spectra
nicely complements the study of the WHIM in emission that the spectrometer
proposed for EDGE and XENIA would be able to carry out thanks to its high
sensitivity and large field of view.Comment: 16 pages, 16 figures, accepted for publication by Ap
From solar to hydrogen: Preliminary experimental investigation on a small scale facility
Issues of exhaustible natural resources, fluctuating fossil fuel prices and improvements in electric power systems motivated governments to behave positively toward the development of distributed generation. In addition, progresses in small size generation technologies and storage systems give rise to a significant diffusion in microgrids, working together with conventional power grid. Indeed, in the next future, domestic microgrids are expected to play a fundamental role in electric power networks, driving both the academic and industrial research interests in developing high efficient and reliable conversion and storage technologies. In this context, this study presents a feasible configuration of a solar-hydrogen integrated microgrid and documents the procedure to characterize the overall efficiency of a laboratory scale test facility. Experimental results highlight that the most significant inefficiencies in the solar to hydrogen conversion process are mainly attributed to the solar to electrical energy conversion process, being responsible for about 89% of losses. The overall laboratory scale solar to hydrogen chain can reach conversion efficiency up to 5.3%
Measurement of the neutron detection efficiency of a 80% absorber - 20% scintillating fibers calorimeter
The neutron detection efficiency of a sampling calorimeter made of 1 mm
diameter scintillating fibers embedded in a lead/bismuth structure has been
measured at the neutron beam of the The Svedberg Laboratory at Uppsala. A
significant enhancement of the detection efficiency with respect to a bulk
organic scintillator detector with the same thickness is observed.Comment: 10 pages, 7 figure
Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters
We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to
neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to
study its neutron detection efficiency. This has been found larger than what
expected considering the scintillator thickness of the prototype. %To check our
method, we measured also the neutron %detection efficiency of a 5 cm thick
NE110 scintillator. We show preliminary measurement carried out with a
different prototype with a larger lead/fiber ratio, which proves the relevance
of passive material to neutron detection efficiency in this kind of
calorimeters
Observational biases in Lagrangian reconstructions of cosmic velocity fields
Lagrangian reconstruction of large-scale peculiar velocity fields can be
strongly affected by observational biases. We develop a thorough analysis of
these systematic effects by relying on specially selected mock catalogues. For
the purpose of this paper, we use the MAK reconstruction method, although any
other Lagrangian reconstruction method should be sensitive to the same
problems. We extensively study the uncertainty in the mass-to-light assignment
due to luminosity incompleteness, and the poorly-determined relation between
mass and luminosity. The impact of redshift distortion corrections is analyzed
in the context of MAK and we check the importance of edge and finite-volume
effects on the reconstructed velocities. Using three mock catalogues with
different average densities, we also study the effect of cosmic variance. In
particular, one of them presents the same global features as found in
observational catalogues that extend to 80 Mpc/h scales. We give recipes,
checked using the aforementioned mock catalogues, to handle these particular
observational effects, after having introduced them into the mock catalogues so
as to quantitatively mimic the most densely sampled currently available galaxy
catalogue of the nearby universe. Once biases have been taken care of, the
typical resulting error in reconstructed velocities is typically about a
quarter of the overall velocity dispersion, and without significant bias. We
finally model our reconstruction errors to propose an improved Bayesian
approach to measure Omega_m in an unbiased way by comparing the reconstructed
velocities to the measured ones in distance space, even though they may be
plagued by large errors. We show that, in the context of observational data, a
nearly unbiased estimator of Omega_m may be built using MAK reconstruction.Comment: 29 pages, 21 figures, 6 tables, Accepted by MNRAS on 2007 October 2.
Received 2007 September 30; in original form 2007 July 2
- …