7 research outputs found

    Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials

    Get PDF
    There has been a large increase in the number of papers published that are relevant to this review over this review period. The growth in popularity of LIBS is rapid, with applications being published for most sample types. This is undoubtedly because of its capability to analyse in situ on a production line (hence saving time and money) and its minimally destructive nature meaning that both forensic and cultural heritage samples may be analysed. It also has a standoff analysis capability meaning that hazardous materials, e.g. explosives or nuclear materials, may be analysed from a safe distance. The use of mathematical algorithms in conjunction with LIBS to enable improved accuracy has proved a popular area of research. This is especially true for ferrous and non-ferrous samples. Similarly, chemometric techniques have been used with LIBS to aid in the sorting of polymers and other materials. An increase in the number of papers in the subject area of alternative fuels was noted. This was at the expense of papers describing methods for the analysis of crude oils. For nanomaterials, previous years have seen a huge number of single particle and field flow fractionation characterisations. Although several such papers are still being published, the focus seems to be switching to applications of the nanoparticles and the mechanistic aspects of how they retain or bind with other analytes. This is the latest review covering the topic of advances in the analysis of metals, chemicals and materials. It follows on from last year's review1-6 and is part of the Atomic Spectrometry Updates series

    Using micro-XRF to characterize chloride ingress through cold joints in 3D printed concrete

    No full text
    Digital fabrication methods with concrete have been rapidly developing, with many problems related to component production and material control being solved in recent years. These processes produce inherently layered cementitious components that are anisotropic, and in many cases, produces a weak interface between layers, which are generally referred to as cold joints. While material strength at these interfaces has been well studied in recent years, durability has received less attention, even though cold joints can function as channels for aggressive agents, such as chlorides. This work presents a method using micro-X-ray fluorescence (μXRF) to image chloride ingress into layer interfaces of 3D printed fine-grained concrete specimens produced with varying layer deposition time intervals, and also compares it to neutron imaging of moisture uptake. The results show that cold joints formed after a 1 day time interval are highly susceptible to chloride ingress, and that curing conditions play a major role in how quickly interfacial transport can take place. The μXRF method is also shown to be useful for study of transport of chlorides in cold joints, due to its spatial resolution and direct analysis of an aggressive species of interest.ISSN:1359-5997ISSN:0025-5432ISSN:1871-687
    corecore