22 research outputs found

    The Predictive Factors of Hospital Bankruptcy—An Exploratory Study

    No full text
    The United States healthcare industry has witnessed a number of hospitals declare bankruptcy. This has a meaningful impact on local communities with vast implications on access, cost, and quality of care available. In our research, we seek to determine what contemporary structural and operational factors influence a bankruptcy outcome, and craft predictive models to guide healthcare leaders on how to best avoid bankruptcy in the future. In this exploratory study we performed, a single-year cross-sectional analysis of short-term acute care hospitals in the United States and subsequently developed three predictive models: logistic regression, a linear support vector machine (SVM) model with hinge function, and a perceptron neural network. Data sources include Definitive Healthcare and Becker’s Hospital Review 2019 report with 3121 observations of 32 variables with 27 observed bankruptcies. The three models consistently indicate that 18 variables have a significant impact on predicting hospital bankruptcy. Currently, there is limited literature concerning financial forecasting models and knowledge detailing the factors associated with hospital bankruptcy. By having tailored knowledge of predictive factors to establish a sound financial structure, healthcare institutions at large can be empowered to take proactive steps to avoid financial distress at the organizational level and ensure long-term financial viability

    Models for Heart Failure Admissions and Admission Rates, 2016 through 2018

    No full text
    Background: Approximately 6.5 to 6.9 million individuals in the United States have heart failure, and the disease costs approximately 43.6 billion in 2020. This research provides geographical incidence and cost models of this disease in the U.S. and explanatory models to account for hospitals’ number of heart failure DRGs using technical, workload, financial, geographical, and time-related variables. Methods: The number of diagnoses is forecast using regression (constrained and unconstrained) and ensemble (random forests, extra trees regressor, gradient boosting, and bagging) techniques at the hospital unit of analysis. Descriptive maps of heart failure diagnostic-related groups (DRGs) depict areas of high incidence. State- and county-level spatial and non-spatial regression models of heart failure admission rates are performed. Expenditure forecasts are estimated. Results: The incidence of heart failure has increased over time with the highest intensities in the East and center of the country; however, several Northern states have seen large increases since 2016. The best predictive model for the number of diagnoses (hospital unit of analysis) was an extremely randomized tree ensemble (predictive R2 = 0.86). The important variables in this model included workload metrics and hospital type. State-level spatial lag models using first-order Queen criteria were best at estimating heart failure admission rates (R2 = 0.816). At the county level, OLS was preferred over any GIS model based on Moran’s I and resultant R2; however, none of the traditional models performed well (R2 = 0.169 for the OLS). Gradient-boosted tree models predicted 36% of the total sum of squares; the most important factors were facility workload, mean cash on hand of the hospitals in the county, and mean equity of those hospitals. Online interactive maps at the state and county levels are provided. Conclusions. Heart failure and associated expenditures are increasing. Costs of DRGs in the study increased 61 billion from 2016 through 2018. The increase in the more expensive DRG 291 outpaced others with an associated increase of $92 billion. With the increase in demand and steady-state supply of cardiologists, the costs are likely to balloon over the next decade. Models such as the ones presented here are needed to inform healthcare leaders

    Cenozoic sediment budget of West Africa and the Niger delta

    No full text
    International audienceLong-term (106–7 yr) clastic sedimentary fluxes to the ocean provide first-order constraints on the response of continental surfaces to both tectonic and climatic forcing as well as the supply that builds the stratigraphic record. Here, we use the dated and regionally correlated relict lateritic landforms preserved over Sub-Saharan West Africa to map and quantify regional denudation as well as the export of main catchments for three time intervals (45–24, 24–11 and 11–0 Ma). At the scale of West Africa, denudation rates are low (ca. 7 m Myr−1) and total clastic export rate represents 18.5 × 103 km3 Myr−1. Export rate variations among the different drainage groups depend on the drainage area and, more importantly, rock uplift. Denuded volumes and offshore accumulations are of the same magnitude, with a noticeably balanced budget between the Niger River delta and its catchment. This supports the establishment of the modern Niger catchment before 29 Ma, which then provided sufficient clastic material to the Niger delta by mainly collecting the erosion products of the Hoggar hotspot swell. Accumulations on the remaining Equatorial Atlantic margin of Africa suggest an apparent export deficit but the sediment budget is complicated by the low resolution of the offshore data and potential lateral sediment supply from the Niger delta. Further distortion of the depositional record by intracontinental transient storage and lateral input or destabilization of sediments along the margin may be identified in several locations, prompting caution when deducing continental denudation rates from accumulation only

    A COMPARISON BETWEEN PROPOSED SMALL MODULAR REACTORS AND EXISTING POWER REACTORS WITH REGARD TO SPENT FUEL NUCLEAR MATERIAL ATTRACTIVENESS A COMPARISON BETWEEN PROPOSED SMALL MODULAR REACTORS AND EXISTING POWER REACTORS WITH REGARD TO SPENT FUEL NUCLEAR M

    No full text
    ABSTRACT The nuclear material attractiveness of used fuel from proposed small modular reactors is evaluated relative to used fuel from the existing fleet of power reactors. Irradiated fuels at several burn-ups and cooling times are considered. The methodology for evaluating the materials attractiveness is based on previously used metrics and binning approaches and is consistent with the "attractiveness levels" that are normally reserved for nuclear materials in DOE nuclear facilities. Commercial power reactor fuels are unattractive at charge but may become attractive after discharge and age, depending upon the degree of burn-up, the fuel composition, and the reactor type. Some used Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) fuels in the US are over 40 years in age and their radiation dose rates continue to decline, calling into question the "self protecting" nature of these older used fuels. This study examines the attractiveness of used fuel assemblies from typical BWR 7x7, BWR 8x8, PWR 17x17, PWR-MOX 17x17, and VVER-440 reactors. A new generation of small modular reactor (SMR) designs promises a number of benefits relative to the existing fleet of commercial power reactors, including portability, viable initial investment level, scalability due to modularity, and improved security. The somewhat shorter length (and hence lighter weight) of SMR fuel assemblies along with the potential for greater decentralization are additional factors that need to be considered. Like commercial power reactors fuels, the two candidate SMR fuels are unattractive at charge, but may become attractive after discharge and age, depending upon the degree of burn-up, the fuel composition, and the reactor type. For all practical purposes the attractiveness of the used commercial power reactor fuels and used fuels from the two SMRs under consideration in the US are identical. The differences between the existing power reactors and the two proposed SMRs largely comes down to differences in fuel assembly size and facility characteristics. This study is consistent with previous studies that demonstrate the importance of ensuring tha

    Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity

    No full text
    Contains fulltext : 117732.pdf (Publisher’s version ) (Open Access)Cell surface heparan sulfate (HS) proteoglycans shape organogenesis and homeostasis by capture and release of morphogens through mechanisms largely thought to exclude the core protein domain. Nevertheless, heparanase deglycanation of the N-terminal HS-rich domain of syndecan-1 (SDC1), but not SDC2 or -4, is a prerequisite for binding of the prosecretory mitogen lacritin (Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., and Laurie, G. W. (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174, 1097-1106). We now report that the conserved and hydrophobic GAGAL domain in SDC1, adjacent to predicted HS substitution sites, is necessary to ligate and substantially enhance the alpha-helicity of the amphipathic C terminus of lacritin. Swapping out GAGAL for GADED in SDC2 or for GDLDD in SDC4 (both less hydrophobic) abrogated binding. HS and chondroitin sulfate are also essential. Both are detected in the N terminus, and when incubated with antibodies HS4C3 (anti-HS) or IO3H10 (anti-chondroitin sulfate), binding was absent, as occurred when all three N-terminal glycosaminoglycan substitution sites were mutated to alanine or when cells were treated with 4-methylumbelliferyl-beta-d-xylopyranoside or chlorate to suppress glycosaminoglycan substitution or sulfation, respectively. SDC1 interacts with the hydrophobic face of lacritin via Leu-108/Leu-109/Phe-112 as well as with Glu-103/Lys-107 and Lys-111 of the largely cationic face. Carving a hybrid hydrophobic/electrostatic docking site out of SDC1 in a manner dependent on endogenous heparanase is a dynamic process appropriate for subtle or broad epithelial regulation in morphogenesis, health, and disease
    corecore