10 research outputs found

    Modulation of orbitofrontal-striatal reward activity by dopaminergic functional polymorphisms contributes to a predisposition to alcohol misuse in early adolescence

    Get PDF
    Background: Abnormalities in reward circuit function are considered a core feature of addiction. Yet, it is still largely unknown whether these abnormalities stem from chronic drug use, a genetic predisposition, or both. Methods: In the present study, we investigated this issue using a large sample of adolescent children by applying structural equation modeling to examine the effects of several dopaminergic polymorphisms of the D1 and D2 receptor type on the reward function of the ventral striatum and orbital frontal cortex, and whether this relationship predicted the propensity to engage in early alcohol misuse behaviours at 14 years of age and again at 16 years of age. Results: The results demonstrated a regional specificity with which the functional polymorphism rs686 of the DRD1 gene and Taq1A of the ANKK1 gene influenced medial and lateral orbital frontal cortex activation during reward anticipation, respectively. Importantly, our path model revealed a significant indirect relationship between the rs686 of the DRD1 gene and early onset of alcohol misuse through a medial orbital frontal cortex and the ventral striatum interaction. Conclusions: These findings highlight the role of D1 and D2 in adjusting reward-related activations within the mesocorticolimbic circuitry, as well as in the susceptibility to early onset of alcohol misuse

    Priority research needs to inform amphibian conservation in the Anthropocene

    Get PDF
    The problem of global amphibian declines has prompted extensive research over the last three decades. Initially, the focus was on identifying and characterizing the extent of the problem, but more recently efforts have shifted to evidence‐based research designed to identify best solutions and to improve conservation outcomes. Despite extensive accumulation of knowledge on amphibian declines, there remain knowledge gaps and disconnects between science and action that hamper our ability to advance conservation efforts. Using input from participants at the ninth World Congress of Herpetology, a U.S. Geological Survey Powell Center symposium, amphibian on‐line forums for discussion, the International Union for Conservation of Nature Assisted Reproductive Technologies and Gamete Biobanking group, and respondents to a survey, we developed a list of 25 priority research questions for amphibian conservation at this stage of the Anthropocene. We identified amphibian conservation research priorities while accounting for expected tradeoffs in geographic scope, costs, and the taxonomic breadth of research needs. We aimed to solicit views from individuals rather than organizations while acknowledging inequities in participation. Emerging research priorities (i.e., those under‐represented in recently published amphibian conservation literature) were identified, and included the effects of climate change, community‐level (rather than single species‐level) drivers of declines, methodological improvements for research and monitoring, genomics, and effects of land‐use change. Improved inclusion of under‐represented members of the amphibian conservation community was also identified as a priority. These research needs represent critical knowledge gaps for amphibian conservation although filling these gaps may not be necessary for many conservation actions

    Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR

    No full text
    Uhde A, Brühl N, Goldbeck O, et al. Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol. 2016;198(16):2204-2218

    Chassis organism from Corynebacterium glutamicum – Genome reduction as a tool toward improved strains for synthetic biology and industrial biotechnology

    No full text
    Baumgart M, Unthan S, Radek A, et al. Chassis organism from Corynebacterium glutamicum – Genome reduction as a tool toward improved strains for synthetic biology and industrial biotechnology. In: New Biotechnology. New Biotechnology. Vol 33. Elsevier BV; 2016

    Corynebacterium glutamicum chassis C1*: Building and testing a novel platform host for synthetic biology and industrial biotechnology

    No full text
    Baumgart M, Unthan S, Kloss R, et al. Corynebacterium glutamicum chassis C1*: Building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synthetic Biology. 2018;7(1):132–144.Targeted top-down strategies for genome reduction are considered to have a high potential for providing robust basic strains for synthetic biology and industrial biotechnology. Recently, we created a library of 26 genome-reduced strains of Corynebacterium glutamicum carrying broad deletions in single gene clusters and showing wild-type-like biological fitness. Here, we proceeded with combinatorial deletions of these irrelevant gene clusters in two parallel orders and the resulting library of 28 strains was characterized under various environmental conditions. The final chassis strain C1* carries a genome reduction of 13.4% (412 deleted genes) and shows wild-type-like growth behavior in defined medium with D-glucose as carbon and energy source. Moreover, C1* proves to be robust against several stresses (including oxygen limitation) and shows long-term growth stability under defined and complex medium conditions. In addition to providing a novel prokaryotic chassis strain, our results comprise a large strain library and a revised genome annotation list, which will be valuable sources for future systemic studies of C. glutamicum

    Priority research needs to inform amphibian conservation in the Anthropocene

    No full text
    The problem of global amphibian declines has prompted extensive research over the last three decades. Initially, the focus was on identifying and characterizing the extent of the problem, but more recently efforts have shifted to evidence-based research designed to identify best solutions and to improve conservation outcomes. Despite extensive accumulation of knowledge on amphibian declines, there remain knowledge gaps and disconnects between science and action that hamper our ability to advance conservation efforts. Using input from participants at the ninth World Congress of Herpetology, a U.S. Geological Survey Powell Center symposium, amphibian on-line forums for discussion, the International Union for Conservation of Nature Assisted Reproductive Technologies and Gamete Biobanking group, and respondents to a survey, we developed a list of 25 priority research questions for amphibian conservation at this stage of the Anthropocene. We identified amphibian conservation research priorities while accounting for expected tradeoffs in geographic scope, costs, and the taxonomic breadth of research needs. We aimed to solicit views from individuals rather than organizations while acknowledging inequities in participation. Emerging research priorities (i.e., those under-represented in recently published amphibian conservation literature) were identified, and included the effects of climate change, community-level (rather than single species-level) drivers of declines, methodological improvements for research and monitoring, genomics, and effects of land-use change. Improved inclusion of under-represented members of the amphibian conservation community was also identified as a priority. These research needs represent critical knowledge gaps for amphibian conservation although filling these gaps may not be necessary for many conservation actions

    Priority research needs to inform amphibian conservation in the Anthropocene

    No full text
    The problem of global amphibian declines has prompted extensive research over the last three decades. Initially, the focus was on identifying and characterizing the extent of the problem, but more recently efforts have shifted to evidence-based research designed to identify best solutions and to improve conservation outcomes. Despite extensive accumulation of knowledge on amphibian declines, there remain knowledge gaps and disconnects between science and action that hamper our ability to advance conservation efforts. Using input from participants at the ninth World Congress of Herpetology, a U.S. Geological Survey Powell Center symposium, amphibian on-line forums for discussion, the International Union for Conservation of Nature Assisted Reproductive Technologies and Gamete Biobanking group, and respondents to a survey, we developed a list of 25 priority research questions for amphibian conservation at this stage of the Anthropocene. We identified amphibian conservation research priorities while accounting for expected tradeoffs in geographic scope, costs, and the taxonomic breadth of research needs. We aimed to solicit views from individuals rather than organizations while acknowledging inequities in participation. Emerging research priorities (i.e., those under-represented in recently published amphibian conservation literature) were identified, and included the effects of climate change, community-level (rather than single species-level) drivers of declines, methodological improvements for research and monitoring, genomics, and effects of land-use change. Improved inclusion of under-represented members of the amphibian conservation community was also identified as a priority. These research needs represent critical knowledge gaps for amphibian conservation although filling these gaps may not be necessary for many conservation actions.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore