170 research outputs found

    Combined TEM - cathodoluminescence study of nitride semiconductor structures

    Get PDF
    This work presents the results of an investigation into the technique of combined TEM-Cathodoluminescence and its application to the study of GaN epitaxial layers grown by MOVPE and PAMBE on sapphire and LiAlO(_2) substrates respectively - and MOVPE grown In(_x)Ga(_1-x)N/GaN/A1(_2)O(_3) QW structures. The measurement of CL in a TEM allows spectral information to be correlated with structural information. In-situ electron beam degradation curves of panchromatic CL from GaN epilayers and In(_0.1)Ga(_0.9)N QW emission revealed a decline in the luminescence which could be attributed to the introduction of non-radiative recombination centres. The influence of thickness on both CL spectra and images was investigated experimentally and by modelling. A method of normalising STEM-CL images for thickness contrast was developed. Application of this normalisation to In(_0.1)Ga(_0.9)N QWs in cross-section revealed inhomogeneous CL with bright regions 200-700nm in width. No systematic relationship was identified between luminescence at the QW peak emission wavelength, QW(_A), and luminescence at QW(_A) ±10nm. This finding does not support the hypothesis that variation in QW CL brightness is due to local compositional fluctuation. However, clusters of threading dislocations were shown to suppress QW luminescence and are suggested as a cause for the observed inhomogeneity in luminescence. A statistical analysis of (dislocation related) V-pits in In(_x)Ga(_1-x)N MQW samples revealed clustering of pits on a length scale of 60-120nm, but no long range clustering indicative of sub-grain boundaries was found. Finally TEM-CL spectra and monochromatic line-scans were used to show that bundles of basal plane stacking faults in M-plane GaN epitaxial layers grown on LiAlO(_2) emit radiatively at 3.3-3.35eV (l00K). The radiative transition energy is consistent with models in the literature that consider basal plane stacking faults to be layers of cubic GaN in the wurtzite matrix which act as type II QWs

    Towards an analysis of the teacher as researcher

    Get PDF
    The purpose of this study has been the examination of the role of the 'teacher as researcher' and the analysis of, the participation of teachers in research in their own classrooms. This has involved a study of two projects - the Humanities Curriculum Project and the Ford Teaching Project - which introduced the idea of teachers examining their own practice, and an analysis of action research from the perspectives of John Elliott and Stephen Kemmis. Three recent projects: (a) Leicestershire Classroom Research In-Service Education Project (b) A Register of Self-Evaluation Schemes compiled with the Open University (c) A Schools Council Programme 2 Project: Leicestershire Network were analysed to determine what happened when teachers engaged in self-evaluation and research in their own classrooms. The results show that there are only a small number of teachers actively engaged in self-evaluation and they experience difficulty in starting their research because they lack experience of monitoring techniques and how to fit these procedures into the routines of teaching. Creating time to engage in self-evaluation is a major inhibiting factor. The need for a support structure to help teachers is clearly identified and-the role of co-ordinators to bring teachers together to share ideas is essential for the development of this work. At the present moment the teachers have taken the first step in acquiring competence and confidence. Many of the teachers expressed the view that self-evaluation had enabled them to learn more about their teaching, about pupils, and about their own subject

    Structure‐based design, synthesis and biological evaluation of bis‐tetrahydropyran furan acetogenin mimics targeting the trypanosomatid F1 component of ATP synthase

    Get PDF
    This work was funded by the Leverhulme Trust (G.J.F.), Wellcome Trust ISSF support (G.J.F./T.K.S.) and the European Community’s Seventh Framework Programme under grant agreement No. 602773 [Project KINDRED] (T.K.S.).The protozoan parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for the severely debilitating neglected Tropical diseases of African sleeping sickness, Chagas disease and leishmaniasis, respectively. As part of our ongoing programme exploring the potential of simplified analogues of the acetogenin chamuvarinin we identified the T. brucei FoF1‐ATP synthase as a target of our earlier triazole analogue series. Using computational docking studies we hypothesized that the central triazole heterocyclic spacer could be substituted for a central 2,5‐substituted furan moiety, thus diversifying the chemical framework for the generation of compounds with greater potency and/or selectivity. Here we report the design, docking, synthesis and biological evaluation of new series of trypanocidal compounds and demonstrate their on‐target inhibitory effects. Furthermore, the synthesis of furans by the modular coupling of alkyne‐ and aldehyde‐THPs to bis‐THP 1,4‐alkyne diols followed by ruthenium/xantphos‐catalysed heterocyclisation described here represents the most complex use of this method of heterocyclisation to date.Publisher PDFPeer reviewe

    Dampened predictable decadal North Atlantic climate fluctuations due to ice melting

    Get PDF
    The oscillatory behaviour of the climate system on decadal timescales before the instrumental record is hard to quantify. However, knowledge of this variability is important for putting current changes in context and for supporting reliable future predictions. Here we investigate the recurrent component of Holocene climate variability in the North Atlantic sector from 10,500 to 2,000 years ago by conducting a frequency analysis of both an annually laminated climate record from a lake in England and outputs from a long transient simulation of the Atlantic meridional overturning circulation. We find consistent decadal variability over the past 6,700 years and before 8,500 years before present, probably reflecting predominance of solar and ocean forcings. Between these dates, climate variability was dampened on decadal timescales. Our results suggest that meltwater discharge into the North Atlantic and the subsequent hydrographic changes, from the opening of the Hudson Bay until the final collapse of the Laurentide Ice Sheet, disrupted the decadal cyclic signals for more than a millennium. Given the current acceleration of the Greenland Ice Sheet melting in response to global warming, this study provides long-term evidence of potential challenges predicting future patterns of the climate syste

    A self-optimised approach to synthesising DEHiBA for advanced nuclear reprocessing, exploiting the power of machine-learning

    Get PDF
    In an effort to advance the development of hydrometallurgical reprocessing of used nuclear fuel across the globe, this work sets out to explore and identify an optimised, cost effective pathway to synthesise the ligand DEHiBA (N,N-di-(2-ethylhexyl)isobutyramide). Currently, very few chemical suppliers stock and distribute this specialist ligand, designed for selective uranium chelation and extraction from nuclear fuel. The current high cost of DEHiBA therefore restricts access to essential large-scale testing of this promising ligand designed to advance nuclear reprocessing. This work utilises an automated flow reactor platform for the efficient optimisation of four synthetic routes to DEHiBA. These optimisations focus on optimising cost, reagent efficiency, yield, and productivity target functions by exploiting the power of machine-learning algorithms for rapid process development. Ultimately, we have identified an efficient and cost-effective solvent-free route to DEHiBA from isobutyric anhydride and di-2-ethylhexylamine for 99%, at a purity of 76%, and a process mass intensity of 1.29 g g−1, whilst alternative conditions demonstrated productivities >75 kg L−1 h−1, all whilst maintaining a high level of process control with outlet temperatures not exceeding 35 °C

    MOF-based heterogeneous catalysis in continuous flow via incorporation onto polymer-based spherical activated carbon supports

    Get PDF
    We present an approach to harnessing the tuneable catalytic properties of complex nanomaterials for continuous flow heterogeneous catalysis by combining them with the scalable and industrially implementable properties of carbon pelleted supports. This approach, in turn, will enable these catalytic materials, which largely currently exist in forms unsuitable for this application (e.g. powders), to be fully integrated into large scale, chemical processes. A composite heterogeneous catalyst consisting of a metal–organic framework-based Lewis acid, MIL-100(Sc), immobilised onto polymer-based spherical activated carbon (PBSAC) support has been developed. The material was characterised by focused ion beam-scanning electron microscopy-energy dispersive X-ray analysis, powder X-ray diffraction, N2 adsorption, thermogravimetric analysis, atomic absorption spectroscopy, light scattering and crush testing with the catalytic activity studied in continuous flow. The mechanically robust spherical geometry makes the composite material ideal for application in packed-bed reactors. The catalyst was observed to operate without any loss in activity at steady state for 9 hours when utilised as a Lewis acid catalyst for the intramolecular cyclisation of (±)-citronellal as a model reaction. This work paves the way for further development into the exploitation of MOF-based continuous flow heterogeneous catalysis

    Imaging of Light-Enhanced Extracellular Vesicle-Mediated Delivery of Oxaliplatin to Colorectal Cancer Cells via Laser Ablation, Inductively Coupled Plasma Mass Spectrometry

    Get PDF
    Extracellular vesicles (EVs) are lipid bilayer structures released by all cells that mediate cell-to-cell communication via the transfer of bioactive cargo. Because of the natural origin of EVs, their efficient uptake by recipient cells, capacity to stabilize and transport biomolecules and their potential for cell/tissue targeting and preferential uptake by cancer cells, they have enormous potential for bioengineering into improved and targeted drug delivery systems. In this work, we investigated the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool to measure the loading of platinum-based chemotherapeutic agents. The EV loading of oxaliplatin via co-incubation was demonstrated, and LA-ICP-MS imaging showed greater efficiency of delivery to colorectal cancer cells compared to free oxaliplatin, leading to enhanced cytotoxic effect. Further, the impact of EV co-loading with a porphyrin (C5SHU, known as ‘C5’) photosensitizer on oxaliplatin delivery was assessed. Fluorescence analysis using nano-flow cytometry showed dose-dependent EV loading as well as a trend towards the loading of larger particles. Exposure of OXA-C5-EV-treated colorectal cancer cells to light indicated that delivery was enhanced by both light exposure and porphyrins, with a synergistic effect on cell viability observed between oxaliplatin, EVs and light exposure after the delivery of the co-loaded EVs. In summary, this work demonstrates the utility of LA-ICP-MS and mass spectrometry imaging in assessing the loading efficiency and cellular delivery of platinum-based therapeutics, which would also be suitable for agents containing other elements, confirms that EVs are more efficient at delivery compared to free drugs, and describes the use of light exposure in optimizing delivery and therapeutic effects of EV-mediated drug delivery both in combination and independently of porphyrin-based photosensitizers
    • 

    corecore