1,131 research outputs found

    Effects of fade distribution on a mobile satellite downlink and uplink performance in a frequency reuse cellular configuration

    Get PDF
    In a mobile satellite system with a frequency reuse cellular configuration, significant co-channel interference can be experienced due to the antenna sidelobe level. The signal will be subjected not only to its own fading, but also to the effect of the varying degree of fading on co-channel interferer, and this interference will behave differently in the up and in the down link. This paper presents a quantitative evaluation of the combined effects of fades and co-channel interference on a mobile satellite link

    Use of specific Green's functions for solving direct problems involving a heterogeneous rigid frame porous medium slab solicited by acoustic waves

    Full text link
    A domain integral method employing a specific Green's function (i.e., incorporating some features of the global problem of wave propagation in an inhomogeneous medium) is developed for solving direct and inverse scattering problems relative to slab-like macroscopically inhomogeneous porous obstacles. It is shown how to numerically solve such problems, involving both spatially-varying density and compressibility, by means of an iterative scheme initialized with a Born approximation. A numerical solution is obtained for a canonical problem involving a two-layer slab.Comment: submitted to Math.Meth.Appl.Sc

    Pre-transplant CD45RC expression on blood T cells differentiates patients with cancer and rejection after kidney transplantation

    Get PDF
    Background Biological biomarkers to stratify cancer risk before kidney transplantation are lacking. Several data support that tumor development and growth is associated with a tolerant immune profile. T cells expressing low levels of CD45RC preferentially secrete regulatory cytokines and contain regulatory T cell subset. In contrast, T cells expressing high levels of CD45RC have been shown to secrete proinflammatory cytokines, to drive alloreactivity and to predict acute rejection (AR) in kidney transplant patients. In the present work, we evaluated whether pre-transplant CD45RClow T cell subset was predictive of post-transplant cancer occurrence. Methods We performed an observational cohort study of 89 consecutive first time kidney transplant patients whose CD45RC T cell expression was determined by flow cytometry before transplantation. Post-transplant events including cancer, AR, and death were assessed retrospectively. Results After a mean follow-up of 11.1±4.1 years, cancer occurred in 25 patients (28.1%) and was associated with a decreased pre-transplant proportion of CD4+CD45RChigh T cells, with a frequency below 51.9% conferring a 3.7-fold increased risk of post-transplant malignancy (HR 3.71 [1.24–11.1], p = 0.019). The sensibility, specificity, negative predictive and positive predictive values of CD4+CD45RChigh<51.9% were 84.0, 54.7, 89.8 and 42.0% respectively. Confirming our previous results, frequency of CD8+CD45RChigh T cells above 52.1% was associated with AR, conferring a 20-fold increased risk (HR 21.7 [2.67–176.2], p = 0.0004). The sensibility, specificity, negative predictive and positive predictive values of CD8+CD45RChigh>52.1% were 94.5, 68.0, 34.7 and 98.6% respectively. Frequency of CD4+CD45RChigh T cells was positively correlated with those of CD8+CD45RChigh (p<0.0001), suggesting that recipients with high AR risk display a low cancer risk. Conclusion High frequency of CD45RChigh T cells was associated with AR, while low frequency was associated with cancer. Thus, CD45RC expression on T cells appears as a double-edged sword biomarker of promising interest to assess both cancer and AR risk before kidney transplantation

    Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes

    Get PDF
    Sequence analysis of organelle genomes and comprehensive analysis of C-to-U editing sites from flowering and non-flowering plants have provided extensive sequence information from diverse taxa. This study includes the first comprehensive analysis of RNA editing sites from a gymnosperm mitochondrial genome, and utilizes informatics analyses to determine conserved features in the RNA sequence context around editing sites. We have identified 565 editing sites in 21 full-length and 4 partial cDNAs of the 39 protein-coding genes identified from the mitochondrial genome of Cycas taitungensis. The information profiles and RNA sequence context of C-to-U editing sites in the Cycas genome exhibit similarity in the immediate flanking nucleotides. Relative entropy analyses indicate that similar regions in the 5′ flanking 20 nucleotides have information content compared to angiosperm mitochondrial genomes. These results suggest that evolutionary constraints exist on the nucleotide sequences immediately adjacent to C-to-U editing sites, and similar regions are utilized in editing site recognition

    Estimation du sexe fœtal à partir de l’ilium

    Get PDF
    La détermination du sexe est une des problématiques les plus fréquemment rencontrées en anthropologie médico-légale. Chez l’adulte, cette détermination est essentiellement basée sur l’os iliaque et autorise un très fort taux de classification correcte, tandis que chez le fœtus, les études sont beaucoup moins nombreuses et conduisent à des résultats souvent contradictoires.Nous avons recherché sur 83 paires d’ilia fœtaux de la collection ostéologique hongroise de Fazekas et Kosa quels étaient les critères métriques qui décrivaient le mieux le dimorphisme sexuel, en évaluant les différentes méthodes proposées sur l’ilium fœtal et en adaptant certaines de celles proposées chez l’adulte. Nous avons pour cela établi et validé un protocole de prise de clichés photographiques et une méthode de mesure sur image numérisée à partir du logiciel Adobe Photoshop 6‚.Certains des paramètres retenus dans l’étude – principalement ceux qui ont été relevés sur l’échancrure ischiatique – présentant de fortes corrélations avec le sexe, nous avons établi une régression logistique estimant la probabilité d’appartenir à l’un ou l’autre des deux sexes. Le faible pourcentage de discrimination sexuelle obtenu avec cette formule nous a amené à tenir compte de l’âge : nous avons donc structuré notre échantillon en différents groupes d’âge et avons établi une formule permettant de déterminer correctement le sexe dans plus de 85 % des cas (sur l’échantillon qui a servi à l’établir) pour les fœtus dont l’âge est inférieur à 26 semaines d’aménorrhée.Sex estimation is one of the most frequently encountered issues in forensic medicine. While in the case of adults this determination is essentially based on iliac bones and provides a rather reliable classification, there are fewer studies conducted on fetuses and the results are often contradictory.Therefore, we examinated 83 pairs of fetal iliac bones in the Hungarian collection of Fazekas and Kosa and searched for metric criteria that can the best be applied for determining sexual dimorphism. During this research, we tested the different methods proposed for fetal iliac bones and adapted some others used particularly in the case of adults.For this reason, we set up and validated a protocol of taking photographs, as well as a measurement technique developed for numeric pictures with the help of a software program, Adobe Photoshop 6‚.During this study, we selected certain parameters, principally the ones taken on the great sciatic notch, which showed a strong correlation with sex, and we established a logistic regression for estimating the probability of belonging to one sex or the other.The weak percentage of sexual differentiation obtained by this formula led us to take into account age: we organised our sample in different age groups and established a formula that permits correct sex determination in more than 85% of cases (in our sample) for fetuses that are less than 24 gestational weeks old

    Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems

    Full text link
    [EN] Perfect, broadband and asymmetric sound absorption is theoretically, numerically and experimentally reported by using subwavelength thickness panels in a transmission problem. The panels are composed of a periodic array of varying crosssection waveguides, each of them being loaded by Helmholtz resonators (HRs) with graded dimensions. The low cut-off frequency of the absorption band is fixed by the resonance frequency of the deepest HR, that reduces drastically the transmission. The preceding HR is designed with a slightly higher resonance frequency with a geometry that allows the impedance matching to the surrounding medium. Therefore, reflection vanishes and the structure is critically coupled. This results in perfect sound absorption at a single frequency. We report perfect absorption at 300¿Hz for a structure whose thickness is 40 times smaller than the wavelength. Moreover, this process is repeated by adding HRs to the waveguide, each of them with a higher resonance frequency than the preceding one. Using this frequency cascade effect, we report quasi-perfect sound absorption over almost two frequency octaves ranging from 300 to 1000¿Hz for a panel composed of 9 resonators with a total thickness of 11¿cm, i.e., 10 times smaller than the wavelength at 300¿Hz.The authors acknowledge fnancial support from the Metaudible Project No. ANR-13-BS09-0003, cofunded by ANR and FRAE.Jimenez, N.; Romero García, V.; Pagneux, V.; Groby, J. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports. 7(1). doi:10.1038/s41598-017-13706-4S1359571Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature materials 11, 917–924 (2012).Ding, Y., Liu, Z., Qiu, C. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Physical review letters 99, 093904 (2007).Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials. Mrs Communications 5, 453–462 (2015).Yang, Z., Mei, J., Yang, M., Chan, N. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nature Reviews Materials 1, 16001 (2016).Landy, N. I., Sajuyigbe, S., Mock, J., Smith, D. & Padilla, W. Perfect metamaterial absorber. Physical review letters 100, 207402 (2008).Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Advanced materials 24 (2012).Cui, Y. et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser & Photonics Reviews 8, 495–520 (2014).Lee, Y. P., Rhee, J. Y., Yoo, Y. J. & Kim, K. W. Metamaterials for perfect absorption. Springer series in materials science (ISSN 0933-033X 236 (2016).Cui, Y. et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano letters 12, 1443–1447 (2012).Ding, F., Cui, Y., Ge, X., Jin, Y. & He, S. Ultra-broadband microwave metamaterial absorber. Applied physics letters 100, 103506 (2012).Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016).Jiang, X. et al. Ultra-broadband absorption by acoustic metamaterials. Applied Physics Letters 105, 243505 (2014).Leclaire, P., Umnova, O., Dupont, T. & Panneton, R. Acoustical properties of air-saturated porous material with periodically distributed dead-end poresa). J. Acoust. Soc. Am. 137, 1772–1782 (2015).Groby, J.-P., Huang, W., Lardeau, A. & Aurégan, Y. The use of slow waves to design simple sound absorbing materials. J. Appl. Phys. 117, 124903 (2015).Groby, J.-P., Pommier, R. & Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 139, 1660–1671 (2016).Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016).Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America 139, 3395–3403 (2016).Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters 109, 121902 (2016).Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 95, 014205 (2017).Achilleos, V., Theocharis, G., Richoux, O. & Pagneux, V. Non-hermitian acoustic metamaterials: Role of exceptional points in sound absorption. Physical Review B 95, 144303 (2017).Santillán, A. & Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011).Chong, Y., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Physical review letters 105, 053901 (2010).Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).Groby, J.-P., Duclos, A., Dazel, O., Boeckx, L. & Lauriks, W. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating. J. Acoust. Soc. Am. 129, 3035–3046 (2011).Lagarrigue, C., Groby, J., Tournat, V., Dazel, O. & Umnova, O. Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. J. Acoust. Soc. Am. 134, 4670–4680 (2013).Boutin, C. Acoustics of porous media with inner resonators. J. Acoust. Soc. Am. 134, 4717–4729 (2013).Groby, J.-P. et al. Enhancing the absorption properties of acoustic porous plates by periodically embedding helmholtz resonators. J. Acoust. Soc. Am. 137, 273–280 (2015).Wu, T., Cox, T. & Lam, Y. From a profiled diffuser to an optimized absorber. The Journal of the Acoustical Society of America 108, 643–650 (2000).Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Materials Horizons (2017).Yang, J., Lee, J. S. & Kim, Y. Y. Multiple slow waves in metaporous layers for broadband sound absorption. Journal of Physics D: Applied Physics 50, 015301 (2016).Merkel, A., Theocharis, G., Richoux, O., Romero-García, V. & Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107, 244102 (2015).Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014).Yang, M. et al. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104 (2015).Jiménez, N. et al. Broadband quasi perfect absorption using chirped multi-layer porous materials. AIP Advances 6, 121605 (2016).Tsakmakidis, K. L., Boardman, A. D. & Hess, O. Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007).Zhu, J. et al. Acoustic rainbow trapping. Scientific reports 3 (2013).Romero-Garcia, V., Picó, R., Cebrecos, A., Sanchez-Morcillo, V. & Staliunas, K. Enhancement of sound in chirped sonic crystals. Applied Physics Letters 102, 091906 (2013).Ni, X. et al. Acoustic rainbow trapping by coiling up space. Scientific reports 4 (2014).Colombi, A., Colquitt, D., Roux, P., Guenneau, S. & Craster, R. V. A seismic metamaterial: The resonant metawedge. Scientific reports 6 (2016).Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations. In Numerical analysis, 144–157 (Springer, 1978).Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991).Theocharis, G., Richoux, O., García, V. R., Merkel, A. & Tournat, V. Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New J. Phys. 16, 093017 (2014).Kergomard, J. & Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae. J. Sound Vib. 114, 465–479 (1987).Dubos, V. et al. Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85, 153–169 (1999).Mechel, F. P. Formulas of acoustics, 2nd ed. (Springer Science & Business Media, 2008)
    • …
    corecore