79 research outputs found

    A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems

    Full text link
    We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake ecosystem model by augmenting the individual cognitive maps drawn by 8 scientists working in the area of shallow lake ecology. We calculated graph theoretical indices of the individual cognitive maps and the collective cognitive map produced by augmentation. The graph theoretical indices revealed internal cycles showing non-linear dynamics in the shallow lake ecosystem. The ecological processes were organized democratically without a top-down hierarchical structure. The steady state condition of the generic model was a characteristic turbid shallow lake ecosystem since there were no dynamic environmental changes that could cause shifts between a turbid and a clearwater state, and the generic model indicated that only a dynamic disturbance regime could maintain the clearwater state. The model developed herein captured the empirical behavior of shallow lakes, and contained the basic model of the Alternative Stable States Theory. In addition, our model expanded the basic model by quantifying the relative effects of connections and by extending it. In our expanded model we ran 4 simulations: harvesting submerged plants, nutrient reduction, fish removal without nutrient reduction, and biomanipulation. Only biomanipulation, which included fish removal and nutrient reduction, had the potential to shift the turbid state into clearwater state. The structure and relationships in the generic model as well as the outcomes of the management simulations were supported by actual field studies in shallow lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to understand the complex structure of shallow lake ecosystems as a whole and obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure

    Characteristics and Outcomes of Patients With Cerebral Venous Sinus Thrombosis in SARS-CoV-2 Vaccine–Induced Immune Thrombotic Thrombocytopenia

    Get PDF
    Importance: Thrombosis with thrombocytopenia syndrome (TTS) has been reported after vaccination with the SARS-CoV-2 vaccines ChAdOx1 nCov-19 (Oxford-AstraZeneca) and Ad26.COV2.S (Janssen/Johnson & Johnson). Objective: To describe the clinical characteristics and outcome of patients with cerebral venous sinus thrombosis (CVST) after SARS-CoV-2 vaccination with and without TTS. Design, setting, and participants: This cohort study used data from an international registry of consecutive patients with CVST within 28 days of SARS-CoV-2 vaccination included between March 29 and June 18, 2021, from 81 hospitals in 19 countries. For reference, data from patients with CVST between 2015 and 2018 were derived from an existing international registry. Clinical characteristics and mortality rate were described for adults with (1) CVST in the setting of SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia, (2) CVST after SARS-CoV-2 vaccination not fulling criteria for TTS, and (3) CVST unrelated to SARS-CoV-2 vaccination. Exposures: Patients were classified as having TTS if they had new-onset thrombocytopenia without recent exposure to heparin, in accordance with the Brighton Collaboration interim criteria. Main outcomes and measures: Clinical characteristics and mortality rate. Results: Of 116 patients with postvaccination CVST, 78 (67.2%) had TTS, of whom 76 had been vaccinated with ChAdOx1 nCov-19; 38 (32.8%) had no indication of TTS. The control group included 207 patients with CVST before the COVID-19 pandemic. A total of 63 of 78 (81%), 30 of 38 (79%), and 145 of 207 (70.0%) patients, respectively, were female, and the mean (SD) age was 45 (14), 55 (20), and 42 (16) years, respectively. Concomitant thromboembolism occurred in 25 of 70 patients (36%) in the TTS group, 2 of 35 (6%) in the no TTS group, and 10 of 206 (4.9%) in the control group, and in-hospital mortality rates were 47% (36 of 76; 95% CI, 37-58), 5% (2 of 37; 95% CI, 1-18), and 3.9% (8 of 207; 95% CI, 2.0-7.4), respectively. The mortality rate was 61% (14 of 23) among patients in the TTS group diagnosed before the condition garnered attention in the scientific community and 42% (22 of 53) among patients diagnosed later. Conclusions and relevance: In this cohort study of patients with CVST, a distinct clinical profile and high mortality rate was observed in patients meeting criteria for TTS after SARS-CoV-2 vaccination.info:eu-repo/semantics/publishedVersio

    The role of organisms in hyporheic processes : gaps in current knowledge, needs for future research and applications

    Get PDF
    Fifty years after the hyporheic zone was first defined (Orghidan, 1959), there are still gaps in the knowledge regarding the role of biodiversity in hyporheic processes. First, some methodological questions remained unanswered regarding the interactions between biodiversity and physical processes, both for the study of habitat characteristics and interactions at different scales. Furthermore, many questions remain to be addressed to help inform our understanding of invertebrate community dynamics, especially regarding the trophic niches of organisms, the functional groups present within sediment, and their temporal changes. Understanding microbial community dynamics would require investigations about their relationship with the physical characteristics of the sediment, their diversity, their relationship with metabolic pathways, their inter- actions with invertebrates, and their response to environmental stress. Another fundamental research question is that of the importance of the hyporheic zone in the global metabolism of the river, which must be explored in relation to organic matter recycling, the effects of disturbances, and the degradation of contaminants. Finally, the application of this knowledge requires the development of methods for the estimation of hydro- logical exchanges, especially for the management of sediment clogging, the optimization of self-purification, and the integration of climate change in environmental policies. The development of descriptors of hyporheic zone health and of new metrology is also crucial to include specific targets in water policies for the long-term management of the system and a clear evaluation of restoration strategies

    Strategic options development and analysis

    Get PDF
    Strategic Options Development and Analysis (SODA) enables a group or individual to construct a graphical representation (map) or a problematic situation, and thus explore options and their ramifications with respect to a complex system of goals or objectives. In addition the approach aims to help groups arrive at a negotiated agreement about how to act to resolve the situation. It is based upon the use of causal mapping – a formally constructed means-ends network. Because the map has been constructed using the natural language of the problem owners it becomes a model of the situation that is ‘owned’ by those who define the problem. The use of formalities for the construction of the model makes it amenable to a range of analyses encouraging reflection and a deeper understanding. These analyses can be used in a ‘rough and ready’ manner by visual inspection or through the use of specialist causal mapping software. Each of the analyses helps a group or individual discover important features of the problem situation. And these features facilitate agreeing a good solution. The SODA process is aimed at helping a group learn about the situation they face before they reach agreements. Most significantly the exploration through the causal map leads to a higher probability of more creative solutions and promotes solutions that are more likely to be implemented because the problem construction process is more likely to include richer social dimensions about the blockages to action and organizational change. The basic theories that inform SODA derive from cognitive psychology and social negotiation, where the model acts as a continuously changing representation of the problematic situation (a transitional object) – changing as the views of a person or group shift through learning and exploration. This chapter jointly written by two leading practitioner academics and the original developers of SODA, Colin Eden and Fran Ackermann, describe the SODA approach as it is applied in practice

    Creative Thinking and Modelling for the Decision Support in Water Management

    Full text link

    Team Dynamics Theory: Nomological network among cohesion, team mental models, coordination, and collective efficacy

    Get PDF
    I put forth a theoretical framework, namely Team Dynamics Theory (TDT), to address the need for a parsimonious yet integrated, explanatory and systemic view of team dynamics. In TDT, I integrate team processes and outputs and explain their relationships within a systemic view of team dynamics. Specifically, I propose a generative nomological network linking cohesion, team mental models, coordination, collective efficacy, and team outcomes. From this nomological conceptualization, I illustrate how myriad alternative models can be derived to account for variance in different working teams, each comprised of unique members, and embedded in singular contexts. I outline TDT’s applied implications for team development, the enhancement of team functioning, and the profiling of team resilience. I conclude by discussing how TDT’s ontological and nomological propositions can be tested through various theoretical inquiries, methodological approaches, and intervention-based studies
    • …
    corecore