122 research outputs found

    Mixing Design for ATIG Morphology and Microstructure Study of 316L Stainless Steel

    Get PDF
    This work is a study of the effects of oxides combination on the morphology of 316L stainless steel welds. A series of thirteen weld lines were carried out using thirteen different oxides. Based on the depth and ratio D/W results, three candidate oxides were selected: Ti2O, Mn2O3, and SiO2. Mixing method available in Minitab 17 software is the most appropriate method to find the optimal combinations to get the best depth and D/W ratio. According to simplex lattice degree four, nineteen combinations of these oxides were prepared. The results show that the optimal composition of flux was: 66%SiO2-34% Mn2O3. The depth and D/W ratio increased to 8.85mm and 0.98 respectively for optimal ATIG, whereas for the conventional TIG welding, the depth and the ratio D/W didn't exceed 1.65mm and 0.17 respectively. For TIG weld joint the hardness is about 47 HRA and it increases to 77 HRA for the optimal ATIG weld joint. The absorbed energies in Charpy impact test are 146 and 138kJ in the weld zone and in the heat affected zone respectively for the TIG welding and they dropped to 111 and 74kJ for the optimal ATIG welding. The fracture surface examined by scanning electron microscope (SEM) shows a ductile fracture for TIG weld with small dimples but ductile-brittle fracture for ATIG weld. Energy dispersive spectroscopy (EDS/SEM) analysis shows the formation of FeS2 and SiO2 in the weld zone causing low absorbed energy for ATIG weld

    Effect of Single Oxide Fluxes on Morphology and Mechanical Properties of ATIG on 316 L Austenitic Stainless Steel Welds

    No full text
    Tungsten inert gas (TIG) is a wide common process used in fabrication due to its low cost equipment, high quality and accuracy welds but has low productivity related to the low penetration depth in single pass. A new perspective, the Activated Tungsten Inert Gas (ATIG), in which the same equipment as TIG is used, except that a thin layer of activated flux is deposited on a workpiece surface. In this work, eight kinds of oxides were tested on 316L austenitic stainless steel. Three levels of welding current were used to study the effect of different activating fluxes on weld bead geometry and mechanical properties. X-ray Photoelectron Spectroscopy (XPS) was used for the first and the second level energy for different ATIG welds to analyze the relationship between the weld shape and oxygen content in welds. The experimental results showed that the weld profile is related to the thermodynamic stability of selected oxides and in relation to the energy provided. ATIG with TiO2, SiO2, MnO2 oxides presented the deepest welds followed by Cr2O3, Fe2O3, and ZnO. Finally ZrO2, CaO oxides had no effect on the weld depth. The ATIG welded joint showed better tensile strength than TIG. The ATIG hardness measurements carried out showed also better if not the same as TIG weld except for the Silicon oxide weld. Results of the impact test showed that, except for the titanium dioxide TiO2 which has a good benefit, the weldment using the other oxide fluxes exhibits worse withstanding to sudden shock than TIG welding

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore