10 research outputs found

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    ALICE HLT High Speed Tracking on GPU

    No full text
    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be critical. To cope with these problems a dynamic scheduler was introduced, which redistributes the workload among the processor cores. Additionally a pipeline was implemented so that the tracking on the GPU, the initialization and the output process ed by the CPU, as well as the DMA transfer can overlap. The GPU tracking algorithm significantly outperforms the CPU version for large events while it entirely maintains its efficiency

    Prediction of antibiotic resistance : time for a new preclinical paradigm?

    No full text
    Predicting the future is difficult, especially for evolutionary processes that are influenced by numerous unknown factors. Still, this is what is required of drug developers when they assess the risk of resistance arising against a new antibiotic candidate during preclinical development. In this Opinion article, we argue that the traditional procedures that are used for the prediction of antibiotic resistance today could be markedly improved by including a broader analysis of bacterial fitness, infection dynamics, horizontal gene transfer and other factors. This will lead to more informed preclinical decisions for continuing or discontinuing the development of drug candidates

    Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe

    No full text

    Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe

    No full text
    Background Little is known about the incidence of severe critical events in children undergoing general anaesthesia in Europe. We aimed to identify the incidence, nature, and outcome of severe critical events in children undergoing anaesthesia, and the associated potential risk factors. Methods The APRICOT study was a prospective observational multicentre cohort study of children from birth to 15 years of age undergoing elective or urgent anaesthesia for diagnostic or surgical procedures. Children were eligible for inclusion during a 2-week period determined prospectively by each centre. There were 261 participating centres across 33 European countries. The primary endpoint was the occurence of perioperative severe critical events requiring immediate intervention. A severe critical event was defined as the occurrence of respiratory, cardiac, allergic, or neurological complications requiring immediate intervention and that led (or could have led) to major disability or death. This study is registered with ClinicalTrials.gov, number NCT01878760. Findings Between April 1, 2014, and Jan 31, 2015, 31 127 anaesthetic procedures in 30 874 children with a mean age of 6.35 years (SD 4.50) were included. The incidence of perioperative severe critical events was 5.2% (95% CI 5.0-5.5) with an incidence of respiratory critical events of 3.1% (2.9-3.3). Cardiovascular instability occurred in 1.9% (1.7-2.1), with an immediate poor outcome in 5.4% (3.7-7.5) of these cases. The all-cause 30-day in-hospital mortality rate was 10 in 10 000. This was independent of type of anaesthesia. Age (relative risk 0.88, 95% CI 0.86-0.90; p<0.0001), medical history, and physical condition (1.60, 1.40-1.82; p<0.0001) were the major risk factors for a serious critical event. Multivariate analysis revealed evidence for the beneficial effect of years of experience of the most senior anaesthesia team member (0.99, 0.981-0.997; p<0.0048 for respiratory critical events, and 0.98, 0.97-0.99; p=0.0039 for cardiovascular critical events), rather than the type of health institution or providers. Interpretation This study highlights a relatively high rate of severe critical events during the anaesthesia management of children for surgical or diagnostic procedures in Europe, and a large variability in the practice of paediatric anaesthesia. These findings are substantial enough to warrant attention from national, regional, and specialist societies to target education of anaesthesiologists and their teams and implement strategies for quality improvement in paediatric anaesthesia

    Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV

    No full text
    The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Get PDF
    We present measurements of Underlying Event observables in pp collisions at s√=0.9 and 7TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p T,LT in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p T thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2–3 between the lower and higher collision energies, depending on the track p T threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed p T in the Transverse region by about 10–30%

    Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at √sNN = 2.76 TeV

    No full text
    The first measurement of neutron emission in electromagnetic dissociation of 208Pb nuclei at the LHC is presented. The measurement is performed using the neutron Zero Degree Calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV with neutron emission are σ_single EMD = 187.2±0.2 (stat.) +13.8−12.0 (syst.) b and σ_mutual EMD = 6.2 ± 0.1 (stat.) ±0.4 (syst.) b respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.The first measurement of neutron emission in electromagnetic dissociation of 208^{208}Pb nuclei at the LHC is presented. The measurement is performed using the neutron Zero Degree Calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at sNN\sqrt{s_{\rm NN}} = 2.76 TeV with neutron emission are σsingle EMD=187.4±0.2\sigma_{\rm single\ EMD} = 187.4\pm0.2 (stat.) 11.2+13.2^{+13.2} _{-11.2} (syst.) b and σmutual EMD=5.7±0.1\sigma_{\rm mutual\ EMD} = 5.7\pm0.1 (stat.) ±\pm0.4 (syst.) b, respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model

    Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.7Calouste Gulbenkian Foundation from LisbonSwiss Fonds Kidagan, ArmeniaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Financiadora de Estudos e Projetos (FINEP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Natural Science Foundation of China (NSFC)Chinese Ministry of Education (CMOE)Ministry of Science and Technology of China (MSTC)Ministry of Education and Youth of the Czech RepublicDanish Natural Science Research CouncilCarlsberg FoundationDanish National Research FoundationEuropean Research Council under European CommunityHelsinki Institute of PhysicsAcademy of FinlandFrench CNRS-IN2P3Region Pays de LoireRegion AlsaceRegion AuvergneCEA, FranceGerman BMBFHelmholtz AssociationGeneral Secretariat for Research and Technology, Ministry of Development, GreeceHungarian OTKANational Office for Research and Technology (NKTH)Department of Atomic EnergyDepartment of Science and Technology of the Government of IndiaIstituto Nazionale di Fisica Nucleare (INFN) of ItalyMEXT, JapanJoint Institute for Nuclear Research, DubnaNational Research Foundation of Korea (NRF)CONACYTDGAPA, MexicoALFA-ECHELEN Program (High-Energy physics Latin-American-European Network)Stichting voor Fundamenteel Onderzoek der Materie (FOM)Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), NetherlandsResearch Council of Norway (NFR)Polish Ministry of Science and Higher EducationNational Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS)Federal Agency of Science of the Ministry of Education and Science of Russian FederationInternational Science and Technology Center, Russian Academy of SciencesRussian Federal Agency of Atomic EnergyRussian Federal Agency for Science and InnovationsCERN-INTASMinistry of Education of SlovakiaDepartment of Science and Technology, South AfricaCIEMATEELAMinisterio de Educacion y Ciencia of SpainXunta de Galicia (Conselleria de Educacion)CEADENCubaenergia, CubaIAEA (International Atomic Energy Agency)Swedish Reseach Council (VR)Knut & Alice Wallenberg Foundation (KAW)Ukraine Ministry of Education and ScienceUnited Kingdom Science and Technology Facilities Council (STFC)The United States Department of EnergyUnited States National Science FoundationState of TexasState of OhioFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC

    No full text
    corecore