267 research outputs found

    Demographic Invasion, Assamese Identity and Geopolitics

    Get PDF
    This article critically examines several dimensions of the Bangladeshi migration to Assam, beginning with the historical background and the factors that led to the Assam Movement. It is argued that the seeds of the apparent failure of deporting illegal Bangladeshis were already implanted in Assam Accord. An analysis of the numbers of the Bangladeshi migrants in Assam and the problems of ascertaining such numbers has been carried out. The impact of large-scale migration on Assamese culture and politics is discussed in view of the balkanisation of the ethnic groups in Assam. Attention has been drawn to the dangers of geopolitics in terms of the proposed North East economic zone. Lastly, a relatively conciliatory and accommodating approach to solve the Bangladeshi issue has been suggested in light of the fact that historical events have overtaken some significant   provisions of the 28-year old Assam Accord

    Hexane-1,6-diammonium bis­(pyridine-2-carboxyl­ate)

    Get PDF
    The title compound, C6H18N2 2+·2C6H4NO2 −, consists of a doubly protonated hexa­methyl­enediammonium dication and two pyridine-2-carboxyl­ate anions. These ions inter­act by means of inter­molecular N—H⋯O and N—H⋯N hydrogen bonds to form a two-dimensional array. The carboxyl­ate groups of the anions appear to be delocalized on the basis of the C—O bond lengths

    Influence of naturally-occurring 5′-pyrophosphate-linked substituents on the binding of adenylic inhibitors to ribonuclease a: An X-ray crystallographic study

    Get PDF
    Ribonuclease A is the archetype of a functionally diverse superfamily of vertebrate-specific ribonucleases. Inhibitors of its action have potential use in the elucidation of the in vivo roles of these enzymes and in the treatment of pathologies associated therewith. Derivatives of adenosine 5′-pyrophosphate are the most potent nucleotide-based inhibitors known. Here, we use X-ray crystallography to visualize the binding of four naturally-occurring derivatives that contain 5′-pyrophosphate-linked extensions. 5′-ATP binds with the adenine occupying the B2 subsite in the manner of an RNA substrate but with the γ-phosphate at the P1 subsite. Diadenosine triphosphate (Ap3A) binds with the adenine in syn conformation, the β-phosphate as the principal P1 subsite ligand and without order beyond the γ-phosphate. NADPH and NADP+ bind with the adenine stacked against an alternative rotamer of His119, the 2′-phosphate at the P1 subsite, and without order beyond the 5′-α-phosphate. We also present the structure of the complex formed with pyrophosphate ion. The structural data enable existing kinetic data on the binding of these compounds to a variety of ribonucleases to be rationalized and suggest that as the complexity of the 5′-linked extension increases, the need to avoid unfavorable contacts places limitations on the number of possible binding modes. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 995–1008, 2009

    Cerebrospinal fluid matrix metalloproteinase-9 increases during treatment of recurrent malignant gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are enzymes that promote tumor invasion and angiogenesis by enzymatically remodeling the extracellular matrix. MMP-2 and MMP-9 are the most abundant forms of MMPs in malignant gliomas, while a 130 kDa MMP is thought to be MMP-9 complexed to other proteinases. This study determined whether doxycycline can block MMP activity <it>in vitro</it>. We also measured MMP-2 and MMP-9 levels in cerebrospinal fluid (CSF) from patients with recurrent malignant gliomas.</p> <p>Methods</p> <p>To determine whether doxycycline can block MMP activity, we measured the extent of doxycyline-mediated MMP-2 and MMP-9 inhibition <it>in vitro </it>using epidermal growth factor receptor (EGFR) transfected U251 glioma cell lines. MMP activity was measured using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) zymography. In addition, patients underwent lumbar puncture for CSF sampling at baseline, after 6 weeks (1 cycle), and after 12 weeks (2 cycles), while being treated with a novel chemotherapy regimen of irinotecan, thalidomide, and doxycycline designed to block growth/proliferation, angiogenesis, and invasion. Irinotecan was given at 125 mg/m<sup>2</sup>/week for 4 weeks in 6-week cycles, together with continuous doxycycline at 100 mg twice daily on Day 1 and 50 mg twice daily thereafter. Daily thalidomide dose in our cohort was 400 mg. Tumor progression was monitored by magnetic resonance imaging (MRI).</p> <p>Results</p> <p>Doxycyline <it>in vitro </it>completely abolished MMP-9 activity at 500 μg/ml while there was only 30 to 50% inhibition of MMP-2 activity. Four patients respectively completed 4, 3, 1, and 2 cycles of irinotecan, thalidomide, and doxycycline. Patient enrollment was terminated after one patient developed radiologically defined pulmonary embolism, and another had probable pulmonary embolism. Although CSF MMP-2 and 130 kDa MMP levels were stable, MMP-9 level progressively increased during treatment despite stable MRI.</p> <p>Conclusion</p> <p>Doxycycline can block MMP-2 and MMP-9 activities from glioma cells <it>in vitro</it>. Increased CSF MMP-9 activity could be a biomarker of disease activity in patients with malignant gliomas, before any changes are detectable on MRI.</p

    A structural biology community assessment of AlphaFold2 applications

    Get PDF
    Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research

    Marine Antitumor Drugs: Status, Shortfalls and Strategies

    Get PDF
    Cancer is considered as one of the deadliest diseases in the medical field. Apart from the preventive therapies, it is important to find a curative measure which holds no loopholes and acts accurately and precisely to curb cancer. Over the past few decades, there have been advances in this field and there are many antitumor compounds available on the market, which are of natural as well as synthetic origin. Marine chemotherapy is well recognized nowadays and profound development has been achieved by researchers to deal with different molecular pathways of tumors. However, the marine environment has been less explored for the production of safe and novel antitumor compounds. The reason is a number of shortfalls in this field. Though ample reviews cover the importance and applications of various anticancerous compounds from marine natural products, in the present review, we have tried to bring the current status of antitumor research based on marine inhibitors of cancer signaling pathways. In addition, focus has been placed on the shortfalls and probable strategies in the arena of marine antitumor drug discovery

    PDBe-KB: a community-driven resource for structural and functional annotations.

    Get PDF
    The Protein Data Bank in Europe-Knowledge Base (PDBe-KB, https://pdbe-kb.org) is a community-driven, collaborative resource for literature-derived, manually curated and computationally predicted structural and functional annotations of macromolecular structure data, contained in the Protein Data Bank (PDB). The goal of PDBe-KB is two-fold: (i) to increase the visibility and reduce the fragmentation of annotations contributed by specialist data resources, and to make these data more findable, accessible, interoperable and reusable (FAIR) and (ii) to place macromolecular structure data in their biological context, thus facilitating their use by the broader scientific community in fundamental and applied research. Here, we describe the guidelines of this collaborative effort, the current status of contributed data, and the PDBe-KB infrastructure, which includes the data exchange format, the deposition system for added value annotations, the distributable database containing the assembled data, and programmatic access endpoints. We also describe a series of novel web-pages-the PDBe-KB aggregated views of structure data-which combine information on macromolecular structures from many PDB entries. We have recently released the first set of pages in this series, which provide an overview of available structural and functional information for a protein of interest, referenced by a UniProtKB accession
    corecore